
 
 

UNIVERSITÀ DELLA CALABRIA 
 

Dipartimento di Elettronica,  
Informatica e Sistemistica 

 
 

Dottorato di Ricerca in  
Ingegneria dei Sistemi e Informatica 

 

XIX ciclo 
 

 

Tesi di Dottorato 
 
 

 

Effective Histogram-based Techniques 
for Summarizing Multi-dimensional Data 

 
 

 

Giuseppe Massimiliano Mazzeo 
 

 

 
 
 
 
 
 
 
 
 
 
 
 



 
 





 
 



To my granny,
utmost model of

reliability and
devotion to work





Preface

Since databases (in any form) were born, the most important issues that have
been capturing the interest of researchers are those related to the efficiency in
information management. Hundreds of new research results and proposals are
presented every year in the contexts of efficient data exploration and query
execution. Optimizing these tasks can be effectively accomplished without ac-
cessing the data to be elaborated as long as it is somehow possible to estimate
how they are distributed across their domain.

Several techniques for estimating data distributions have been proposed
throughout the years. The very first ones based estimates on few parameters
and several simplifying assumptions, such as uniform distribution of tuples
among disk blocks (uniform placement assumption), uniform distribution of
the tuples w.r.t. attribute values (uniform frequency distribution assumption),
and independence between attribute value distributions (attribute value inde-
pendence assumption). It was early proven that these assumptions are likely
to lead to wrong estimates, which dramatically invalidate the optimization
task. Therefore, in order to improve the estimation accuracy, several tech-
niques for compactly representing the data distributions were proposed. All
these techniques, even though based on many very different approaches, aim
at summarizing the actual data distribution by means of lossy synopses.

The data summarization is often referred to also as data compression or
data reduction. The basic idea is to represent the actual data distribution by
a small number of synopses, which can be efficiently elaborated in order to
obtain fast approximate answers to queries whose computation would result
too slow if performed on the actual data. Of course, the use of synopses is
effective only if the errors affecting the estimates based on them do not mislead
the optimization task.

Some of the main application contexts to which the estimation techniques
were targeted are the block access estimation for database design and query
optimization, the selectivity estimation for query optimization, the exploratory
data analysis in OLAP applications, the statistical and scientific data analysis,
and the window query answering in spatial databases. In these application



vi Preface

contexts, efficiently aggregating data within specified ranges of their domain is
such a crucial issue, that high accuracy in query answers becomes a secondary
requirement.

For instance, query optimizers in relational DBMSs can build an effective
query evaluation plan by estimating the selectivity of intermediate query re-
sults, which can be accomplished by retrieving aggregate information on the
frequencies of attribute values. Obviously, the execution plan optimization
for a given query is effective only if the overall time needed to compute the
optimal query execution plan and to execute it is less than the time needed
to execute the query without optimization: thus fast computation of aggrega-
tions is mandatory, as it determines the efficiency in computing the optimal
query execution plan. Moreover a dramatic precision in evaluating aggregates
is not needed, as knowing the order of magnitude of the size of intermediate
query results suffices to build an effective execution plan.

Likewise, in decision support systems fast answers to range queries in
On-Line Analytical Processing (OLAP) applications are mandatory to pro-
vide useful and timely reports. In this context pieces of information are rep-
resented as points in a multi-dimensional space, where dimensions define dif-
ferent perspectives for viewing data. This representation model is suitable
to support data exploration, as users can navigate information and retrieve
aggregate data by simply specifying the ranges of the data domain they are in-
terested in. In fact Decision Support Systems (DSS) users are often concerned
with performing preliminary explorations of the data domain, to find the re-
gions where a more detailed analysis is needed. In this scenario, high accuracy
in less relevant digits of aggregate-query answers is not needed, as providing
their order of magnitude suffices to locate the regions of the database contain-
ing relevant information. At the same time, fast answers to these preliminary
queries allow users to focus their explorations quickly and effectively, thus
saving large amounts of system resources.

Moreover, there are other application contexts where the need to pose
queries on summarized data arises from other issues than making query an-
swering more efficient. For instance, summarizing data into appropriate syn-
opses may be the only available option when database is remote, and a station-
ary connection with it is not guaranteed. In this case, if a dramatic precision of
query answers is not required, users connected to the database can be equipped
with synopses representing a summarized view of the remotely stored data,
and issue queries on the synopses when disconnected from the DBMS. Obvi-
ously, the size of this summarized view must be much smaller than original
data, especially when client-side storage space resources are very limited.

The data summarization techniques can be roughly classified into para-
metric and nonparametric techniques. The first ones assume that the data
distribution to be summarized follows a known mathematical model, which
can be either a statistical distribution or a polynomial function. Nonpara-
metric techniques make no assumption about the actual data distribution,



Preface vii

and build synopses “letting the data speak for themselves”. Histograms and
sampling are examples of nonparametric summarization techniques.

Histogram-based techniques are those which received the major attention,
and have been largely adopted in commercial relational DBMS systems, such
as DB2, Informix, Ingres, Microsoft SQL Server, Oracle, Sybase, and Tera-
data. However, several different techniques, which are both theoretically and
practically significant, have been proposed in literature.

A histogram over a multi-dimensional data distribution is generally built
by partitioning the data domain into a number of hyper-rectangular blocks
called buckets, and then storing summary information for each block. The
answer of a range query is estimated on the histogram by aggregating the
contributions of all buckets, without accessing the original data. That is, every
bucket overlapping the query range is located and its contribution to the query
answer is evaluated by performing suitable interpolation on the basis of its
summary information.

As expected, on the one hand, querying the histogram rather than the
underlying original data reduces the cost of evaluating answers (as the his-
togram size is much smaller than the original data size). On the other hand,
the loss of information due to summarization introduces some approximation
when queries are estimated on the histogram. Therefore, a crucial issue when
dealing with histograms is finding the partition which provides the “best”
accuracy in reconstructing query answers.

This problem has been widely studied by research community, and many
techniques have been proposed for constructing histograms, which are very
effective especially for one-dimensional data. Unfortunately, these methods
do not scale up to high-dimensionality scenarios. That is, the strategies un-
derlying most of the techniques working in the one-dimensional setting can
be easily extended to the multi-dimensional case, but their performances (in
terms of accuracy) worsen dramatically as dimensionality increases, till esti-
mation errors become intolerable when dealing with high-dimensionality data.
This is the effect of the well-known curse of dimensionality : as the number
of dimensions increases, the number of buckets needed to achieve a satisfiable
degree of accuracy requires a larger and larger amount of storage space for be-
ing stored. This means that no technique succeeds in constructing histograms
yielding “reasonable” error rates within a “reasonable” space bound.

At the same time, no technique based on other approaches than histograms
is known to provide satisfiable accuracy in the multi-dimensional scenario, so
that finding an effective summarization technique for high-dimensionality data
is still an open problem.

Main contributions of this thesis

This thesis is an effort towards the definition of effective summarization tech-
niques for multi-dimensional data. The state-of-the-art techniques are exam-



viii Preface

ined and the issues related to their inability in effectively summarizing multi-
dimensional data are pointed out. The attention is particularly focused on
histogram-based summarization techniques, which are the most flexible, the
most studied and the most adopted in commercial systems. In particular, hier-
archical binary partitions are studied as a basis for effective multi-dimensional
histograms, focusing the attention on two aspects which turn out to be crucial
for histogram accuracy: the representation model and the strategy adopted for
partitioning data into buckets. As regards the former, a very specific space-
efficient representation model is proposed where bucket boundaries are repre-
sented implicitly by storing the partition tree. Histograms adopting this rep-
resentation model (which will be said to be Hierarchical Binary Histograms -
HBH) can store a larger number of buckets within a given amount of memory
w.r.t. histograms using a “flat” explicit storage of bucket boundaries. On top
of that, the introduction of a constraint on the hierarchical partition scheme
is studied, allowing each bucket to be partitioned only by splits lying onto a
regular grid defined on it: histograms adopting such a constrained partitioning
paradigm will be said to be Grid Hierarchical Binary Histograms (GHBH).
The introduction of the grid-constrained partitioning of GHBHs can be ex-
ploited to further enhance the physical representation efficiency of HBHs. As
regards the construction of effective partitions, some new heuristics are intro-
duced, guiding the data summarization by locating inhomogeneous regions of
the data where a finer-grain partition is needed.

The two physical representation schemes adopted by HBH and GHBH can
be viewed as a form of lossless compression to be used on top of the summa-
rization accomplished by histograms (which is a form of lossy compression).
The combination of these forms of compression are shown to result in a rele-
vant improvement of histograms effectiveness. On the one hand, the proposed
compression-based representation models provide a mechanism for efficiently
locating the buckets involved in query estimation, thus reducing the amount
of time needed to estimate queries w.r.t. traditional flat representation mod-
els. On the other hand, applying lossless compression on top of summarization
reduces the loss of information due to summarization, as it enables a larger
amount of summary data to be stored within a given storage space bound:
this turns out to yield lower error rates of query estimates.

By means of experiments, a thorough analysis of different classes of his-
tograms based on hierarchical partitions is provided: the accuracy provided
by combining different heuristics (both the new proposals and the “classi-
cal” heuristics of two well-known techniques, namely MHIST and Min-Skew)
with either the traditional MBR-based representation model or the novel spe-
cific tree-based ones (both the unconstrained and the grid-constrained one)
is studied. These results provide an insight into the value of compression in
the context of histograms based on hierarchical partitions. Interestingly, it
is shown that the impact of both HBH and GHBH representation models
on the accuracy of query estimates is not simply orthogonal to the adopted
heuristic. Thus, the best combination of these different features is identified,



Preface ix

which turns out from adopting the grid-constrained hierarchical partitioning
of GHBHs guided by one of the new heuristics.

GHBH is compared with state-of-the-art techniques (MHIST, Min-Skew,
GENHIST, as well as other wavelet-based summarization approaches), show-
ing that new technique results in much lower error rates and satisfiable degree
of accuracy also at high-dimensionality scenarios.

Another important contribution of this thesis consists in the proposal of a
new approach for constructing effective histograms. The superiority of GHBH
w.r.t. the other histogram-based techniques has been found to depend pri-
marily on the most accurate adopted criterion for guiding the data domain
partitioning. In fact, traditional techniques for constructing histograms often
yield partitions where dense and sparse regions are put together in the same
bucket, thus yielding poor accuracy in estimating queries on summarized data.

Despite GHBH adopts a criterion which in theory avoid this situation,
there is an intrinsic limit in all the top-down partitioning techniques. That
is, histograms which are obtained by iteratively splitting blocks by starting
from the block coinciding with the whole data domain, could not have the
actual possibility to reach all the dense regions in order to isolate them. In
fact, each split yields an increase in the number of bucket and, as the number
of buckets is bounded, the number of split that can be performed is bounded
as well. Therefore, in large domains, where data are particularly skewed, the
number of available splits could not be large enough to reach in a top-down
split-sequence all the dense regions. Thus, it could happen that GHBH starts
the partitioning of data domain following the correct direction which leads to
isolating dense regions, but at a certain point the number of available buckets,
and thus of available splits, is saturated.

This problem could be avoided by adopting a bottom-up strategy, which
first locates the dense region of the data, and then aggregates them into
buckets according to some suitable strategy. The problem of searching dense
regions is very close to the data clustering problem, that is the problem of
grouping database objects into a set of meaningful classes.

The enhancement of the histogram construction has been tried by exploit-
ing the capability of clustering techniques to locate dense regions. A new tech-
nique, namely CHIST (Clustering-based Histograms), for constructing multi-
dimensional histograms on the basis of a well known density-based cluster-
ing algorithm, namely DBSCAN, is proposed. CHIST algorithm first invokes
DBSCAN algorithm for partitioning the data into dense and sparse regions,
and then further refines this partitioning by adopting a grid-based paradigm.
CHIST is compared to GHBH and it is shown to provide lower error rates,
especially in “critical” settings, that is when query selectivity is particularly
low or the compression ratio is very high. It is worth remarking that in these
settings, experiments comparing GHBH to the other techniques showed that
GHBH still provides acceptable error rates, while those provided by other
techniques are completely unacceptable. CHIST is also extended to the case
that data to be summarized are dynamic. In this case, the re-execution of



x Preface

the clustering algorithm at each data update could result prohibitive, due to
the high computational cost of this task. Thus, on the basis of Incremental
DBSCAN algorithm, a strategy for efficiently propagating data updates to
the histogram is proposed. By means of experiments it is shown that the in-
cremental approach, for small updates (i.e., bulk of updates 100 times smaller
than the overall data size) can be computed from 100 to 200 times faster than
the from-scratch re-computation of the histogram, and the accuracy remains
almost unaffected.

Organization of this thesis

This thesis is organized as follows.

In Chapter 1 some application contexts which can benefit from the pos-
sibility of accurately approximating multi-dimensional data distributions are
introduced, paying particular attention to the block access estimation prob-
lem, which is a basic problem both in query optimization and database design,
to the selectivity estimation of range predicates, which is at the basis of query
optimization, and to the data exploratory analysis in OLAP applications. To-
gether with some other application contexts, these problems are showed to
be a particular case of the general problem of efficiently and accurately esti-
mating range queries over multi-dimensional data. The data summarization
is addressed as the main approach for supporting the task of efficiently esti-
mating range queries.

In Chapter 2 an overview of the data main summarization techniques is
presented. In particular some parametric techniques based either on statisti-
cal models or analytical ones, such as the wavelet-transform-based techniques
are described. As regards nonparametric techniques, several histogram-based
summarization techniques are described. A brief overview of sampling-based
techniques and of some hybrid techniques, combining some characteristic of
both parametric and nonparametric techniques is presented as well.

In Chapter 3 a complete study of the histograms based on hierarchical
binary space partitioning is presented. This class of histograms is very im-
portant as the majority of histogram-based techniques present in literature
belongs to it. The main characteristics are investigated and then exploited to
propose a very space-efficient tree-based representation model, which can be
also exploited to efficiently compute range queries over the histogram. Then,
it is shown how a constraint over the splitting position during the data do-
main partitioning can be exploited for further enhancing the space-efficiency
of the histogram representation. As regards the histogram construction, first
it is presented a optimal algorithm having polynomial complexity, which min-
imizes the weighted variance of the the histogram buckets, that is a commonly



Preface xi

adopted measure of the histogram quality. Then, a set heuristics which can
be used to accomplish the greedy construction of the histogram is studied.
Some of them are new, whereas others have been already adopted in other
histogram-based techniques. Those heuristics are compared, showing that al-
though they can be all applied with the same complexity, some of them, in
particular a novel one, enable much more effective partitions of the data do-
main. The representation models are studied as well, and finally, the new
technique, namely GHBH, is compared to some state-of-the-art techniques,
such as MHIST, Min-Skew, GENHIST, as well as other wavelet-based sum-
marization approaches. Finally, experiments studying the histogram construc-
tion efficiency, depending on the original data representation model and on
the possibility of using some pre-computed structures, and other experiments
studying the query execution times are presented.

In Chapter 4 a new approach for effective histogram construction, ex-
ploiting the cluster analysis, is proposed. The main idea on which this ap-
proach is based is that locating dense and sparse regions can be exploited
to partition the data into homogeneous buckets, preventing dense and sparse
regions from being summarized into the same aggregate data. The use of
clustering techniques to support the histogram construction is investigated in
the context of either static and dynamic data, where the use of incremental
clustering strategies is mandatory due to the inefficiency of performing the
clustering task from scratch at each data update. Experiments shows that
these clustering-based histograms outperform the classical histogram-based
summarization techniques, and the incremental approach make their adop-
tion feasible even in those contexts where data are subject to updates.

Finally, the conclusions are presented and some promising issues to be
developed in the future are addressed.

Acknoledgements

I consider myself very lucky for having had the opportunity to spend the years
of my PhD course at the DEIS department of University of Calabria, where the
organization is perfect and people are extraordinary both in professionalism
and humanity. I wish to thank everybody for all the pleasant moments I
spent at the department and for every single discussion which was helpful in
my scientific ripening path and, not least, for their friendship. In particular, I
wish to thank Prof. Domenico Saccà, my supervisor, for his continuous flow of
suggestions (not always easy to be understood at once, but definitely always
fruitful), and Prof. Domenico Talia for his careful coordination of the PhD
course.

I wish to thank Prof. Sergio Greco for his excellent direction of the de-
partment and for his kind attention to the needs of us PhD students.



xii Preface

My biggest acknowledgement goes to my friend Filippo Furfaro, who in-
troduced me to the world of research and has continuously been my heedful
guide, trying to keep me away from several distrauctions1.

I wish to thank very much Cristina Sirangelo, for having always been a
dear friend and for having shared with me the most interesting topics of my
studies. Thank you to Prof. Sergio Flesca, for always reminding me that fine
thinking and colorful manners are not necessarily incompatible, Elio Masciari,
for being a model of dynamism (which unfortunately I am not able to follow),
and Andrea Pugliese, for the funny comments we exchanged about several
linguistic oddness.

Thank you very much to the department staff, in particular to Giovanni
Costabile and Francesco De Marte, for their invaluable technical support.

And last but not least, I wish to thank my dear chum Francesco Parisi, for
reminding me every morning the day of the week together with some other
“useful information” (especially on Wednesdays).

Rende, November 2006 Giuseppe Massimiliano Mazzeo

1 neologism denoting interest in an auction, which takes the attention off something
more important. The word is particularly appropriate for online auctions.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Data summarization: application contexts . . . . . . . . . . . . . . . . . 1
1.1 Block access estimation in database performance analysis . . . . . 2
1.2 Selectivity estimation in query optimization . . . . . . . . . . . . . . . . . 5
1.3 Exploratory data analysis in OLAP applications . . . . . . . . . . . . . 12
1.4 Estimating data distributions in other contexts . . . . . . . . . . . . . . 15
1.5 Generalization of the data distribution estimation problem . . . . 17

1.5.1 Basic notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Data summarization: state-of-the-art techniques . . . . . . . . . . . 21
2.1 Mathematical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Discrete Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Basic mathematical background . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Fast Wavelet Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Querying wavelet coefficients . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Wavelet coefficients thresholding . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Multi-dimensional DWT . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.6 Wavelet-based summarization techniques . . . . . . . . . . . . . 36

2.3 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Querying histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 A Histogram Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.3 Multi-dimensional Histograms . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.4 Histogram-based summarization techniques . . . . . . . . . . . 48
2.3.5 Non-classical Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5 Histograms vs. other techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Hierarchical Binary Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1 Hierarchical Binary Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2 Flat Binary Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xiv Contents

3.3 Hierarchical Binary Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Grid Hierarchical Binary Histograms . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 Spatial efficiency of representation models . . . . . . . . . . . . . . . . . . 74
3.6 Constructing V-Optimal histogram . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7 Greedy algorithms for histogram construction . . . . . . . . . . . . . . . 80

3.7.1 Greedy criteria evaluation for FBH and HBH
construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.2 Greedy criteria evaluation for GHBH construction . . . . . 86
3.7.3 Using pre-computation for evaluating greedy criteria . . . 87
3.7.4 Complexity of Greedy Algorithm . . . . . . . . . . . . . . . . . . . . 88
3.7.5 Workspace size for Greedy Algorithm . . . . . . . . . . . . . . . . 90

3.8 Estimating range queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.9 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.9.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.9.2 Real life data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.9.3 Experimental plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.9.4 Comparing FBH and HBH under different greedy

criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.9.5 Comparing HBH with GHBH . . . . . . . . . . . . . . . . . . . . . . . 101
3.9.6 GHBH versus other techniques . . . . . . . . . . . . . . . . . . . . . . 105
3.9.7 Query estimation times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.9.8 Histogram construction times . . . . . . . . . . . . . . . . . . . . . . . 112

4 Clustering-based Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.1 CHIST : Clustering-based Histogram . . . . . . . . . . . . . . . . . . . . . . . 117

4.1.1 Step I: clustering data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1.2 Step II: summarizing data into buckets . . . . . . . . . . . . . . . 118
4.1.3 Step III: representation of the histogram . . . . . . . . . . . . . 121

4.2 Incremental maintenance of CHIST . . . . . . . . . . . . . . . . . . . . . . . . 126
4.2.1 Step I: incremental clustering . . . . . . . . . . . . . . . . . . . . . . . 127
4.2.2 Step II: storage space distribution among layers and

partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2.3 Step III: rearrangement of buckets . . . . . . . . . . . . . . . . . . . 133

4.3 Costs of the non-incremental and incremental approaches . . . . . 133
4.4 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.4.1 Comparing CHIST with GHBH . . . . . . . . . . . . . . . . . . . . . 136
4.4.2 Efficiency of the incremental approach . . . . . . . . . . . . . . . 137

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



1

Data summarization: application contexts

The problem of data access optimization has always been one of the most
central topics in computer science. Indeed, this problem addresses a large
class of issues, such as the data modelling, both at logical and physical level,
and the information retrieval techniques. Studies related to the definition of
new logical data models, the organization of disk resident data and the query
optimization have always been and continue to be topical issues. Researches
related to these topics have always been strongly encouraged by the wider and
wider spreading of the automatic management of information in all the every-
day-life activities, which in turn has always been encouraged by the advances
in technologies owing to the results of the researches themselves.

Larger and larger amounts of information require hardware systems with
larger and larger computational power, which, indeed, are still improving their
performances according to Moore’s law [102], conjecturing that the transistor
density of integrated circuits, and thus the chip computational power, with
respect to minimum component cost, roughly doubles every two years.

However, the advances in hardware performances could be not enough to
guarantee efficient management of larger and larger amounts of available in-
formation (the capacity of hard drives, and thus the amount of stored data, is
subject to the same exponential growth), if they were not supported by effi-
cient information-representation paradigms and efficient techniques for elab-
orating it. To this aim, since computer science was born, several database
models have been proposed. The relational database model, introduced in
1970 by Codd [32], has been the most successful among all the ones proposed
throughout the years (e.g., hierarchical, network, and object-oriented).

Whatever is is the model adopted by a database designer, the physical
database design is a crucial activity, as it mainly determines the performances
of information management. Furthermore, as the most commonly adopted
language in relational database management systems (RDBMS) is SQL [18],
which is a declarative language, instead of a procedural one, queries posed to
the database could require to be optimized, in order to be efficiently executed.



2 1 Data summarization: application contexts

Both the problems of physical database design and query optimiza-
tion are based on cost models which describe the database performances
[16, 94, 95, 100, 119, 133]. Even if those models may include several param-
eters, the number of accessed pages in evaluating a queries has widely been
considered the most important one. Being this parameter an unknown vari-
able, estimating the number of accessed blocks for a given query was one of
the most studied problem in 1970s and in the early 1980s.

In the following section a brief overview of the studies related to the block
access estimation problem will be presented. Then, the selectivity estimation
problem, which is strictly related to the first one will be introduced. Subse-
quently, the problem of estimating data distribution in OLAP and some other
application contexts will be briefly discussed. Finally, all these problems will
be generalized into the problem of estimating efficiently and accurately range
queries on multi-dimensional data distributions, and basic notations for the
rest of the thesis will be provided.

1.1 Block access estimation in database performance
analysis

Let R be a relation containing n tuples stored in m blocks (pages). If a query
entails retrieving k tuples from R, what is the expected number of blocks that
will be accessed?
The problem above is known as the block access estimation problem and,
intuitively enough, it has a wide importance in the database performance
related studies.

At the beginning, the problem was studied under the assumption that
any of the m pages can be accessed with the same probability at any of the k
retrievals. This assumption implies that data are unstructured (in a structured
file, any access is somehow related to the previous ones).

In [113] Rothnie and Lonzano showed that, in an unstructured file, the
number of block accesses grows almost linearly with the number k of tuples
retrieved. Therefore, the use of secondary indexes becomes less and less effec-
tive as the number k of tuples retrieved approaches the number m of pages.

A first computation of the expected number X(k,m) of accessed blocks
was proposed by Cardenas in 1975 [17]. He stated that

X(m, k) = m ·
[
1 −

(
1 − 1

m

)k
]

(1.1)

This formula can be easily obtained considering that when retrieving one
tuple the probability to access the j-th block is 1

m , then the probability of
not accessing the j-th block is 1 − 1

m . Cardenas, further assumed that the k
retrievals are independent one another, therefore the probability of accessing
the j-th block in none of the k retrievals is (1 − 1

m )k. Thus, the probability



1.1 Block access estimation in database performance analysis 3

of accessing the j-th block almost once is Ij = 1 − (1 − 1
m )k. Therefore, the

expected number of accessed blocks is
∑m

j=1 Ij , which gives Equation 1.1.
Two years later, in [133], Yao observed that the assumption that the k

records are selected independently implies the selection with replacement, that
is a record can be selected more than once. Therefore, he pointed out that
Cardenas’ formula refers to the case of selection with replacement. Yao, in-
stead, studied the problem imposing that the k tuples are distinct. He showed
that the probability of selecting the j-th block, in the case of selection without
replacement, is Ij = 1−Cn·d

k /Cn
k , where d = 1− 1

m (thus, n · d is the number
of tuples outside the j-th block). Therefore, the expected number of accessed
blocks is Y (n,m, k) = m · [1 − Cn·d

k /Cn
k ]. The formula was given by Yao in

the following form:

Y (n,m, k) = m ·
[
1 −

k∏
i=1

n · d− i+ 1
n− i+ 1

]
. (1.2)

Yao remarked that the formula proposed by Cardenas is a lower bound of
his formula and gives good approximation when k � n and m� n.

In [26], Cheung observed that another assumption, besides the selection
with replacement as observed by Yao, is necessary so that Equation 1.1 is
correct: results containing the same records have to be considered different
if the records are chosen in different order. Cheung showed that when the k
tuples are considered as a set, the probability of accessing j-th block in no
one of the k retrievals is Ij = 1 − Cn·d+k

k /Cn+k−1
k , from which, the correct

formula for X(m, k) is the following

X(m, k) = m ·
[
1 −

k∏
i=1

n− p+ i− 1
n+ i− 1

]
(1.3)

In Cheung’s work the expected number of distinct records was also shown
to be nk

n+k−1 , where n is the maximum number of possible distinct tuples
(the domain size of the projection attribute) and k is the number of retrieved
tuples.

A closed formula which approximate Equation 1.2 was introduced in 1983
by Whang and Wiederhold [131]. The error was studied analytically and
it was shown that it can not be larger than 3%. In [92] Luk studied the
problem in the case that the number of retrieved records and block size are
not fixed, but they are represented by stochastic variables. An interesting
result presented in [92] is that, given a set K = {k1, k2, . . . , ks} of pos-
sible values for k, Y (n,m, k̄) = Y (n,m, 1

s · ∑s
i=1 ki) is very often greater

than Ȳ (n,m, k) = 1
s · ∑s

i=1 Y (n,m, ki). Luk showed that if Y (n,m, k̄) <
Ȳ (n,m, k) the difference is negligible, and when the average number of tu-
ples per pages n/m is not small (e.g., greater than 10), it always holds that
Y (n,m, k̄) > Ȳ (n,m, k). If the values in K have small variance the approxi-
mation Y (n,m, k̄) ≈ Ȳ (n,m, k) is good. For a normal distribution of values in



4 1 Data summarization: application contexts

K, by means of experiments, Luk showed that Y (n,m, k̄) is from 10% to 20%
greater than Ȳ (n,m, k) when the maximum value in K is between 2 times and
10 times m. In this cases, he suggested to subtract the 10% from Y (n,m, k̄),
in order to have and approximation of Ȳ (n,m, k) within the 10%. Even if the
study of Luk was restricted to some particular cases, it clearly showed that
when a database is designed on the basis of uniform distribution assumption
of the result size of the queries, the expected number of block accesses is likely
to be overestimated, thus guiding the database designer to wrong decision in
choices about index designing.

In [29] Christodoulakis showed that a generalization of Cardenas’ formula
(Equation 1.1), where the number of records per block is not constant, is a
Shur concave function, and by exploiting the theory of majorization [98], he
proved that the assumption of uniform distribution of records among blocks
often leads to an overestimate of the actual number of block accesses. In
[31] he proved that also the assumptions of uniformity and independence of
attribute values in database relations may lead to large errors in database
performance estimation, when the assumptions are not satisfied. Specifically,
uniform and independence assumption were analytically proved to represent
an upper bound of the expected number of accessed blocks during a query
evaluation. Furthermore, the author interestingly argued that the uniform
query distribution is a pessimistic assumption as well. In fact, according to
the author, the user is more often interested in cases specified by restricting
conditions, which involves only few records, rather than usual cases.

Indeed, the idea that not all records are not accessed with the same fre-
quency dates back to 1963. In [61] Heising conjectured that Pareto’s principle,
proposed by American industrial engineer Juran in 1941 and stating the about
the 80% of consequences stems from about the 20% of causes1, applies also
to the most commercial computer science applications, so that the the 80%
of the transactions runs over the 20% most accessed records in a file.

After proving that the assumption of uniform distribution of number of
tuples inside blocks leads to wrong estimations, in [30] Christodoulakis pro-
posed to model the distribution of tuples inside disk blocks w.r.t. attribute
values by means of multivariate distributions based on Pearson and normal
families. Thus, the expected number of accessed disk blocks can be evaluated
on the basis of the statistical model.

In 1986 Vander Zanden et al. proposed an approximate fast computation of
the expected number of accessed blocks in retrieving k tuples when records are
not uniformly distributed among blocks [124]. Being pi the number of tuples
in the i-th block (1 ≤ i ≤ m), they proposed to order the blocks according
to decreasing values of pi and to approximate the distribution of pi values by
partitioning the ordered sequence of pi into m′ ranges and approximating pi

1 Italian economist Vilfredo Pareto in 1906 observed that the 80% of wealth in
Italy was owned by the 20% of population, and Juran later observed that the
same situation holds is several fields



1.2 Selectivity estimation in query optimization 5

values inside the same range by means of their average. The, the number of
accessed pages can be estimated in time O(m′). By exploiting the theory of
majorization [98], they showed that the estimation made on the histogram is
an upper bound of the expected number of accessed blocks. Accuracy could
be increased by increasing the number of intervals, which means lowering
the upper bound. In the case that one only interval is defined, the expected
value coincides with that of Cardenas’ formula (Equation 1.1). The criterion
proposed to group block densities together was based on a recursive splitting
of the vector representing the ordered block densities (i.e., number of tuples
per block) into two sub-vectors: one containing values larger than the average
and the other less.

Studies related to the block access problem didn’t continue in the direction
based on a more accurate approximation of the data distribution inside blocks.
Indeed, the researchers’ interest, since the early 1980s, had been moving to-
wards another topic, strictly related to the block access estimation problem,
namely the selectivity estimation. While the block access estimation is re-
lated to data distribution estimation at the physical level (number of tuples
per disk block), the selectivity estimation is based on data distribution at the
logical level, that is, the interest is on how data are distributes within the
data domain. This problem will be discussed in the following section.

1.2 Selectivity estimation in query optimization

The interest in the problem of query optimization has significantly increased
since declarative languages, such as SQL, became the most prominent ones
in retrieving information form databases. A declarative-language-based query
evaluator module of a DMBS consists of two main components: the query op-
timizer and the query execution engine. The query optimizer transforms the
queries posed by the users into a sequence of physical operators that are im-
plemented by the query execution engine. The presence of the query optimizer
is mandatory as the user submits a query in an high-level language, describing
by means of conditions the information in which s/he interested, and there
are usually several possibilities to translate the high-level specifications into
sequences of low-level operators. Each possible sequence of low-level operator
for evaluating a query is called evaluation plan or access plan. The choice of
the evaluation plan can affect very significantly the efficiency of the query
evaluation task. Even though in order to choose the most efficient evaluation
plan the query optimizer should take into account several factors, the num-
ber of disk accesses has been widely adopted as a good approximation of the
actual execution cost.

One of the most simple kind of queries to be optimized is the selection
of tuples from a single relation, by specifying some equality or inequality
conditions on a subset of the relation attributes w.r.t. values of the attributes
domain.



6 1 Data summarization: application contexts

This set of queries can be represented by the following SQL query:

SELECT *
FROM R
WHERE cond1(R.X1) AND cond2(R.X2) AND ... AND condd(R.Xd);

where R is a relation with at least d attributes, namely X1,X2, . . . , Xd, each
defined on an ordered discrete domain Di = [infi..supi], and condi is a simple
range selection condition defined on R.Xi of the form li ≤ Xi ≤ hi. Observe
that this condition incudes the cases of equality (infi = supi) and one-side
inequality conditions (li < infi or hi > supi).

In this query the crucial choice which can affect query execution efficiency
is related to the indexes: accessing data by means of an index, could improve
the efficiency but it requires additional accesses to the index data structure
itself. Thus, in evaluating this query it must be chosen which index have to
be exploited2.

Assuming that secondary indexes are available on d′ of the d attributes,
there are 2d′

possible query evaluation plans, depending on whether each one
of the d′ available indexes is adopted or not. When d” indexes are chosen
to be accessed, that is the indexes defined on Xi1 ,Xi2 , . . . , Xid” , the query
execution engine will access each one of these d” indexes, and for the j-th
selected index it will find the set Pj of pages containing the tuples satisfying
condij

. Then, the intersection P = P1 ∩ P2 ∩ . . . ∩ Pd” will be computed and
the pages in P will be accessed in order to select the qualifying tuples (i.e.,
the tuples satisfying all the d conditions). Of course, the case in which d” = 0,
i.e. the query is executed without accessing any index, the query engine will
scan the entire relation in order to select the qualifying tuples.

In order to select the optimal execution plan, the number of both the
accessed index and data pages has to be estimated, for each possible query
plan. As the number of needed estimations could become very large as d′

increases, each estimation must be performed very quickly, otherwise the aim
of the query optimization would be invalidated.

The cost of a query plan clearly depends on the cost of accessing all the
indexes exploited by the query plan the number of data pages to be accessed.
The estimation of the number of accessed index pages is straightforward, as
the tuples are ordered inside the index pages according to the index key.
The number of pages accessed, in the case of a tree-based index, such as a
B+-Tree [33], is �log�n/mi� n�+ �mi · ki/n�, where n is the number of indexed
tuples, mi is the number of pages spanned by the index on Xi and ki is the

2 The problem of index choice is crucial also in the database design [114]: the adop-
tion of an index, can make query execution more efficient, but require additional
costs to propagate changes in data to it. Thus, in designing a database it must
be chosen which/how index have to be implemented. In [106] Piatetsky-Shapiro
proved that the optimal choice of secondary keys an NP-hard problem.



1.2 Selectivity estimation in query optimization 7

number of tuples satisfying condi. The estimation of the number of accessed
data pages can be accomplished by adopting Yao’s formula (Equation 1.2),
or the formula proposed by Whang and Wiederhold for a faster approximate
evaluation [131], on the basis of the number n of tuples contained in the
relation R, the number m of data pages spanned by R and the number k of
tuples satisfying the conditions condi1 , condi2 , . . . , condid” jointly3.

Observe that, for each query plan the estimations of both the number of
accessed index and data pages are based on some unknown parameters, that
is the number ki of tuples satisfying the condition condi and the number k
of tuples satisfying d” conditions jointly. Therefore, the estimation of these
parameters, which represent the selectivity of the conditions, is fundamental
for the query plan cost evaluation.

As remarked before, the estimations must be performed quickly, there-
fore, an exact evaluation of the selectivity of the conditions (e.g., by means
of detailed tables storing the number of tuples assuming each value of the
attributes domains) is infeasible.

On the other hand, an accurate estimation of the selectivity of each con-
dition is mandatory. In fact, wrong selectivity estimations would bias the
estimated cost of each execution plan, thus possibly leading the query opti-
mization module to a wrong choice.

Thus, the problem of selecting the optimal query plan, can be effectively
solved by efficiently estimating how many of tuples satisfy each condition
specified by the query separately how many tuples satisfy all the conditions
jointly. This task can be achieved by answering range queries on the data
distribution representing the attribute value frequency distribution and the
joint frequency distribution of tuples, which are defined in the following.

Definition 1.1 (Attribute values frequency distribution) Let R be a
relation, X an attribute of R defined on the domain D = [inf..sup]. The at-
tribute values frequency distribution of X is a function fX : [inf..sup] → [0, 1]
such that fX(v) is the ratio between the number of tuples t ∈ R satisfying the
condition t.X = v and the overall number of tuples in R.

The number of tuples satisfying several conditions specified on different
attributed jointly is represented by the multi-dimensional function defined in
the following.

Definition 1.2 (Joint frequency distribution) Let R be a relation de-
fined over attributes X1 . . . Xd, with Xi defined over the domain Di =
[infi..supi]. The joint frequency distribution of the attributes X1 . . . Xd is a
function f : D → [0, 1], where D = D1 ×D2 × · · · ×Dd, such that, for each
〈v1, v2, . . . vd〉 with vi ∈ Di, f(v1, v2, . . . vd) is the ratio between the number
3 If a primary index were defined over an attribute R.Xi, tuples would be or-

dered in the pages according to R.Xi, and accessing the primary index, with
cost O(log�n/mi� n), would enable to exactly determining the number of pages
containing the tuples satisfying condi.



8 1 Data summarization: application contexts

of tuples t ∈ R satisfying the conditions t.Xi = vi ∀i ∈ [1..d] and the overall
number of tuples in R.

The most simple assumption on which it is possible to base the estimation
of the frequency distribution for each attribute Xi, is the uniform frequency
distribution assumption (UFD), which states that there is an equal number
of tuples assuming each possible value of the domain on which Xi is defined.

More formally, the value frequency distribution of the attribute Xi, fXi
,

is estimated to be constant and equal to

f̃Xi
(v) =

1
supi − infi + 1

,∀v ∈ [infi..supi]. (1.4)

Therefore, the portion of tuples satisfying a condition li ≤ t.Xi ≤ hi is esti-
mated as

hi∑
v=li

f̃Xi
(v) =

hi − li + 1
supi − infi + 1

.

In order to estimate the joint frequency distribution, the correlation among
attributes has to be evaluated. The most simple assumption consists in the
absence of correlation, namely in the attribute value independence assumption
(AVI). According to this assumption, the joint frequency distribution of d
attributes is estimated as the product of the frequency distributions of the
single attribute values. Therefore, f(v1, v2, . . . , vd) is estimated as

f̃(v1, v2, . . . , vd) =
d∏

i=1

fXi
(vi). (1.5)

These two assumptions, mainly owing to their simplicity, were the first to be
adopted in the majority of models proposed in 1970s for studying the problem
of secondary indexes selection both in database design [114, 119] and query
optimization [116].

The following example illustrate how the query evaluation plan is selected
by means of these two assumptions.

Example 1.1 Suppose to submit the following query to a relational DBMS:

SELECT *
FROM Employee
WHERE age<=40 AND income>25 000;

being Employee a relation containing 50 000 tuples stored in 1 250 pages.
Suppose that non-clustered indexes (i.e., tuples in data pages are not ordered
according to index key) are defined on the attributes age and income and
each index is a B+-Tree index stored in 200 pages. Suppose that the values
of the attribute age range between 18 and 65 and the values of the attribute
income range between 10 001 and 50 000.



1.2 Selectivity estimation in query optimization 9

Let ci denote the cost of choosing the i-th of the four possible query
execution plans, which are the following:

1. disregarding both indexes and scanning the entire relation, evaluating
both conditions on each tuple of Employee;

2. accessing index on age, selecting pages ids with tuples satisfying age ≤ 40
and then accessing only these pages for retrieving the qualifying tuples;

3. accessing index on income, and the proceeding like in the previous case;
4. accessing both indexes and then accessing only the pages that are refer-

enced by both indexes (i.e., the data pages in the intersection between the
two index results).

Each ci is given by the estimated number of accessed index pages, Ii, and
the estimated number of accessed data pages, Pi.

Obviously, according to the first possibility, I1 = 0 and P = 1250, as the
entire relation spans 1 250 pages.

In order to estimate the other costs, an estimation of the selectivity of
each condition separately and of both conditions jointly is needed.

On the hypothesis of uniform distribution assumption, the query optimizer
would estimate that

k1 = 50 000 · 40 − 17
66 − 17

∼= 23 958

tuples satisfy condition age ≤ 40 and

k2 = 50 000 · 50 000 − 25 000
50 000 − 10 000

= 31 250

tuples satisfy the condition income > 25 000. Adopting the attribute value in-
dependence assumption, the estimated number of tuples satisfying both con-
ditions would be

k = 50 000 · 40 − 17
65 − 17

· 50 000 − 25 000
50 000 − 10 000

∼= 14 974.

Thus, the cost of accessing index on age can be estimated as

Iage = �log�50 000/200� 50 000� +
⌈
200 · 23 958

50 000

⌉
= 98,

and similarly the cost of accessing index on income can be estimated as

Iincome = �log�50 000/200� 50 000� +
⌈
200 · 31 250

50 000

⌉
= 127.

The 2nd and the 3rd query plans entail accessing indexes on age and income,
respectively, therefore I2 = Iage = 98 and I3 = Iincome = 127. The 4nd query
plan entails accessing both indexes, thus I4 = Iage + Iincome = 225.



10 1 Data summarization: application contexts

In order to estimate the number of accessed data pages, it is possible
to adopt Equation 1.2, which gives P2 = P3 = P4 = 1250 for all the three
estimated numbers of tuples, k1, k2 and k, that have to be retrieved, according
to the 2nd, 3rd and 4th possible query plans.

Therefore, the estimated cost of 2nd, 3rd and 4th query plan is, respec-
tively, c2 = I2 +P2 = 1348, c3 = I3 +P3 = 1377 and I4 = I4 +P4 = 1475. On
the basis of these estimations, the query optimizer will choose the first query
evaluation plan, which disregards the indexes and access the entire relations.
�

Unfortunately, the simplifying assumptions of UFD and AVI are often
too simplistic as they rarely holds in real-life data distributions, and it is
likely that they mislead the query optimizer. Uniform distributions are quite
unlikely in real-life data, while correlation among attributes is quite likely to
hold4. In order to better handle real data distributions, several techniques for
accurately and efficiently approximating them have been proposed. One of
the very first works addressing the problem of approximating effectively data
distributions was proposed by Merret and Otoo in 1979 [101]. They proposed
to use tables, for summarizing attribute values distributions. These tables
can be obtained by partitioning the domain of each attribute, thus obtaining
some multi-dimensional range, and storing the count of tuples falling into
each of these ranges. Instead of applying the uniform frequency distribution
assumption to the overall data domain, the uniformity assumption is applied
locally inside each sub-domain corresponding to a cell of the table.

10 001–20 000 20 001–30 000 30 001–40 000 40 001–50 000 Total

18–29 13 500 300 0 0 13 800

30–41 17 750 1 990 10 0 19 750

42–53 7 750 3 065 30 5 10 850

54–65 3 500 2 045 40 15 5 600

Total 42 500 7 400 80 20 50 000

Table 1.1. Two-dimensional table representing the number of tuples grouped by
some ranges of age and income values

Table 1.1 depicts the distribution of tuples for the relation considered in
the previous example. By means of this table, the query optimizer, for the
same previous example, would have made the following estimations.

Example 1.1 (continued) The number of tuples satisfying the condition
age ≤ 30 is estimated as

4 For instance, functional dependencies, which are a very common form of con-
straints adopted in relational databases, represent strong correlations among at-
tributes.



1.2 Selectivity estimation in query optimization 11

k1 = 13 800 + 19 750 · 40 − 29
41 − 29

≈ 31 904.

Notice that this is likely to be a better estimation than the uniform frequency
distribution assumption over the whole domain, as the partial contribution to
the estimation of 13 800 tuples with age ∈ [18..29], is an exact contribution.
The estimation is only performed on the number of tuples with age ∈ [30..40].

The number of tuples satisfying the condition on income is estimated as

k2 = 5400 · 30 000 − 25 000
30 000 − 20 000

+ 80 + 20 = 3 800.

In fact, from Table 1.1 it emerges that the exact number of tuples with
income ∈ [30 001..50 000] is exactly 80 + 20. Instead, the number of tuples
with income ∈ [25 001..30 000] must be estimated.

Finally, the estimated number of tuples satisfying both the conditions is
k = 1071.

Thus, the cost of accessing index on age can be estimated as

Iage = �log�50 000/200� 50 000� +
⌈
200 · 31 904

50 000

⌉
= 130,

and similarly the cost of accessing index on income can be estimated as

Iincome = �log�50 000/200� 50 000� +
⌈
200 · 3 800

50 000

⌉
= 18.

The 2nd and the 3rd query plans entail accessing indexes on age and income,
respectively, therefore I2 = Iage = 130 and I3 = Iincome = 18. The 4nd query
plan entails accessing both indexes, thus I4 = Iage + Iincome = 148.

The estimated number of accessed data pages for the 2nd, the 3rd and the
4th evaluation plan, is P2 = 1250, P3 = 1198 and P4 = 725, respectively.

Therefore, the 4th evaluation plan results to be the more efficient.
Observe that the estimation of the number of tuples satisfying both the

conditions was not based on the attribute value independence assumption,
but on an approximation of the joint frequency distribution by means of a
table.

By adopting the attribute value independence assumption, on the basis of
the estimated number of tuples satisfying the condition on age and that on
income separately, the estimated number of tuples satisfying both conditions
would be k = 2425, which would make the estimated number of accessed
data pages equal to P4 = 1079. In this case, the cost of the 3rd evaluation
plan, c3 = I3 + P3 = 1216, would be estimated less than the cost of the 4th
evaluation plan, c4 = I4 + P4 = 1363. �

It is quite intuitive that the estimation based on the adoption of a table
is likely to be more accurate, than the estimation based on the hypothesis of
uniform frequency distribution and, moreover, the approximation of the joint



12 1 Data summarization: application contexts

frequency distribution by means of a table is likely to be more accurate than
the attribute value independence assumption, even though the single attribute
distributions are estimated by means of tables on each single attribute.

Form the example above it emerged how different estimates of condition se-
lectivity can significantly yield different efficiency in executing a simple query.
Therefore, it turns out that efficiently and effectively estimating data density
distribution is a crucial task in query optimization, even in the most simple
cases. Indeed, selectivity estimation is also at the basis of more complex cases
of query optimization, where projection, selection and join operators are de-
fined within the same query. In this case, the query optimizer should choose
the best order in operators execution, i.e. that which minimize a cost function
according to some model [22, 77]. Intuitively, the best execution plan is that
which yields the smaller in size intermediate results. The majority of the stud-
ies related to this topic is mainly focused on the optimization-related aspect
of the problem. For instance, in [123] Swami and Gupta studied how to apply
algorithms for general combinatorial optimization problems based on local
search to the large join query optimization problem (LJQOP). They found
that among perturbation walk, quasi-random sampling, iterative improvement,
and simulated annealing, the iterative improvements usually yields the best
execution plans. Instead, Ioannidis, Wong, and Kang in [67] and [68] found
that simulated annealing can identify lower cost access plans w.r.t. iterative
improvement. Independently on the adopted optimization algorithm, which
is necessarily an approximate one in order to avoid the exponential cost of
the unacceptable exhaustive search technique, the estimation of each single
operation cost is based on the selectivity estimation of the operation itself.
Any optimization strategy requires that the selectivity estimation of the sin-
gles operations is performed efficiently, due to the large number of estimation
that could be required, and effectively, otherwise the chosen query plan could
be very far from being optimal.

1.3 Exploratory data analysis in OLAP applications

In Decision Support Systems (DSS) several tools for managing huge amount
of data can help knowledge workers in choosing the best marketing strategies
for maximizing their company profits. Traditional data representation mod-
els, such as the relational one, are not suitable for those kind of tasks. In
fact, relational DBMSs have been essentially targeted to the on-line trans-
action processing (OLTP), where many transactions can be run concurrently
and commonly entail inserting, reading or updating few records. Thus, these
DBMSs are optimized for maximizing the transaction throughput, guarante-
ing consistency and recoverability of data, which are the most critical aspects
in operational databases. Instead, they are not targeted for data analysis tasks
which require efficient access to a large number of records per transaction.



1.3 Exploratory data analysis in OLAP applications 13

Therefore, in the last few years, the definition of both new data repre-
sentation models and management systems became mandatory, in order to
efficiently support DSS. Specifically, new technologies for the on-line analyt-
ical processing (OLAP) were required, i.e. technologies tailored for the inte-
gration and analysis of large amounts of data, where transaction concurrency
is not the primary requirements, whereas transactions on large amounts of
data are common and must be performed as efficiently as possible. The data
warehouse has emerged as the system capable of guaranteing those require-
ments [21]. According to Immon, a data warehouse is a “subject oriented,
integrated, time-varying, non-volatile collection of data that is used primarily
in organizational decision making” [66].

Data warehouses must support the integration of large amount of consol-
idated historical data, possibly gathered from several sources, and thus may
be required to store terabytes of data.

Relational
Databases

External

Sources

Data Sources

Back-end

Tools

Data Warehouse

Metadata

Repository

Data Marts

OLAP

Servers

Data Analysis

Query/Reporting

Data Mining

Front-end Tools

Fig. 1.1. Data Warehouse architecture

The general architecture of a data warehousing system is depicted in
Fig. 1.1. Its main components are:

• Back-end tools: are adopted to extract and integrate data from different
sources, which generally require to be pruned by possible errors and to
be transformed according to a standard schema stored in the metadata
repository ;

• Data warehouse: is the database which can be based either on the relational
model or on the multi-dimensional model;

• Data marts: are more specific databases, each one specialized on a partic-
ular subject of interest. They are often constructed as an alternative to
the data warehouse, as they are more simple, and thus more cheap, to be
built;



14 1 Data summarization: application contexts

• OLAP servers: provide a logical multi-dimensional model for data and the
basic functionalities for efficiently operating on them;

• Front-end tools: are those tools which are adopted by the final user (the
knowledge worker) for analyzing data.

The multi-dimensional model adopted by the OLAP servers is needed in
order to efficiently support front-end tools. In the multi-dimensional data
are logically organized in structures called data cubes [52, 53]. For example,
consider a relation Sales with attributes Product, Year, and Amount. This
relation contains three attribute which in a DSS have different functions: in
fact, one of them represent a measure that has to be studied with respect to
some contexts which are represented by the other two attributes, year and
product, which are called dimensional attributes. The relation sales can be
also represented as a two-dimensional array, where each dimension correspond
to a different dimensional attribute, and the value inside the cell represent the
value associated with the corresponding dimensional values.

Product Year Amount

P1 2001 3 000

P1 2002 4 000

P2 2002 2 000

P1 2003 3 000

P2 2003 4 000

P3 2003 2 000

P1 2004 2 000

P2 2004 4 000

P3 2004 5 000

P4 2004 3 000

P3 2005 6 000

P4 2005 9 000

(a)

P1 P2 P3 P4
2001 3 000 null null null
2002 4 000 2 000 null null
2003 3 000 4 000 2 000 null
2004 2 000 4 000 5 000 3 000
2005 null null 6 000 9 000

(b)

Fig. 1.2. A table (a) and its corresponding multi-dimensional representation (b).

In Fig. 1.2 a possible instance of the relation Sales (a) and its multi-
dimensional representation (b) are depicted. It can be observed that several
values in the two-dimensional array are null. This is due to the fact that the
array contains the cells corresponding to all the possible combinations of the
values which the dimensional attributes can assume (formally, there is a cell for
each element of the cartesian product of the dimensional attribute domains).
Instead, in a relation, only some combinations of attribute values appear as
records. The difference between the number of cells and the number of tuples
of the original relation becomes more and more relevant as the number of
dimensions increases. In fact, while usually a larger number of attributes does



1.4 Estimating data distributions in other contexts 15

not make increase the number of tuples, the d-dimensional array size increase
exponentially w.r.t. d. This phenomenon affects the density of data cubes (i.e.,
the ratio between the number of non-null values and the number of cells) at
high-dimensionality, which in the real cases are often very very sparse.

A hierarchy is often defined over dimensional attributes. For instance, if an
attribute date belongs to a relation, a hierarchy year-month-day can be defined
over date. Thus, several data cubes can be obtained by adopting aggregations
at different hierarchical levels on the attribute date.

The basic functionalities which OLAP servers provide to front-end tools
are aggregate operators, which enable to adapt the multi-dimensional view of
data:

• roll-up: increases the level of aggregation on a dimensional attribute which
is characterized by a hierarchy;

• drill-down: is the opposite to the roll-up operator, decreasing the level of
aggregation on a dimensional attribute;

• slice-and-dice: selects a hyper-rectangular subregion of the data cube by
assigning precise values to some dimensional attributes;

• pivoting : exchange the order of the dimensional attributes, thus re-orienting
the multi-dimensional view of data.

A typical data analysis process consists in exploring data in order to find
“interesting” regions of the data cube (data exploratory analysis). For exam-
ple, both isolated non-null points of the data cube (outliers) and particularly
dense regions can be of interest in a data mining process. In order to effi-
ciently locate these regions, the study of terabytes of data can result infea-
sible. Therefore, data are first studied at a high level of aggregation, which
represent much more compact versions of the data cube, thus efficiently man-
ageable, but still enabling dense or sparse regions to be located. Then, by
means of slice-and-dice and drill-down operations, the analysis is specialized
towards the regions of interest, without needing to work on the overall data
cube which, as remarked before, can be infeasible.

In order to have an exact representation of the data cube at several lev-
els of aggregations, several data cubes should be materialized (of course, an
aggregation on-the-fly would not be an efficient solution). This could be in-
feasible, as a too large number of different aggregations could be possible [60].
Therefore, another solution to the problem of efficiently estimating the density
of data cube regions, by means of range queries, is needed. Of course, in order
to drive the data analysis towards the regions of actual interest, estimation
must be as accurate as possible.

1.4 Estimating data distributions in other contexts

Besides the three application contexts previously described, for which several
proposed estimation techniques have been specifically targeted, there are sev-



16 1 Data summarization: application contexts

eral other contexts which require an efficient and effective estimation of a data
distribution.

For example, in scientific and statistical databases [118], users could be
interested in the number of records satisfying certain criteria rather than
the records themselves. Executing such a query by computing the result set
and then applying a count operator, would yield a waste of computational
power. The availability of data statistical summary could enhance the system
performance [88].

Another scenario where statistical summary could be useful is that in
which the user may have not idea of the result size of the query s/he poses. If
the result size were to large, probably many of the results could be uninterest-
ing for the user. Thus, if the system gave a warning message before executing
a time-consuming process, the user could rewrite the query specifying more
restricting conditions, thus avoiding a waste of computational resources.

A more specific problem arises in those contexts where a user may be not
interested in all the tuples satisfying a query s/he poses, but rather in a subset
of them, characterized by the N tuples which “better” satisfy a property
of interest. For example, consider the case in which a user is interested in
buying some recently published book from an online shop. From a search
form s/he could specify a lower bound for the publishing date, but s/he could
obtain too many or too few results. One possibility could be reformulating the
query with another date. Another possibility could be ordering the results, if
too many, according to the publication date. The better solution would be
having the possibility to ask for the N most recent books. Of course, in this
case, the DBMS could give an exact response, but a trivial algorithm based
on the ordering of all the result tuples on the attribute of interest could
be too expensive w.r.t. the limited number of the actually returned tuples.
This problem is known as Top N query [24, 36] on the attribute X and it
is equivalent to a simple selection query of the form σX>k(q), where q is
the result of the query and k is a cutoff parameter strictly depending on N
and on the data distribution w.r.t. the attribute X. Knowing the value k
before executing the query would enable to filter the results during the query
execution, and not as an additional step. Of course, if the tuple distribution
w.r.t. the values of X were exactly known, k could be exactly computed.
However, the required cost of this computation would make void the benefits
of knowing k in advance. Therefore, a possible solution consists in quickly
evaluating k on an approximation of the data distribution, and to filter the
query result on the basis of the approximate value of k. Of course, the query
result would be acceptable only if the error in approximating k were not to
large.

Another context in which estimating efficiently data distribution can be
useful is that of geographical information systems (GISs) [3, 96]. In this con-
text, spatial data can represent several information associated to points of a
two-dimensional or three-dimensional data domain, such as altitude, pollu-
tion, temperature, rainfall, humidity, presence of roads, etc. A typical query



1.5 Generalization of the data distribution estimation problem 17

on a geographical database could be “compute the average pollution in a given
area”. It is obvious that the efficient evaluation of this query could be achieved
by efficiently evaluating a distribution corresponding to the pollution levels
w.r.t. the geographical space.

The GIS context could be generalized adding the time as another dimen-
sion of the data distribution. The monitoring of several environmental vari-
ables can be very important in order to predict natural catastrophes. In fact,
if past situations are known to have leaded to environmental problems, pre-
dictions of future ones can be achieved by analyzing the data distribution
representing the current situation. These kind of data, which are continuously
collected into a database and represent information associated to instants of
time, are called data streams [135, 136]. As those data can be huge in volume
and quick response to queries could be mandatory, even in this context an
efficient evaluation of a data distribution is needed.

The problem of query optimization could become more important in the
case of distributed database systems [134]. In fact, in this case, transferring
intermediate results to one node of the distributed system to another could
be needed. Thus, as transmission costs usually overwhelm the local ones (cpu,
main and secondary memory costs), maintaining as small as possible interme-
diate query results could be even more important than in the local context.
Of course, the strategy of the query optimizer is not very different: only in the
cost model, the weight of data transmissions has to be taken into account. An-
other important issue in distributed systems but also in local multi-processor
systems is the load-balancing for query execution [110]. When executing a
join operation, load-balancing algorithms can fairly distribute the overall load
among processors on the basis of the underlying data distributions of the re-
lations involved in the join. Thus, even in distributed systems, an effective
and efficient technique for estimating data distributions, possibly remotely
resident, continue to be very important.

1.5 Generalization of the data distribution estimation
problem

From the previous sections, it emerges that the problem of estimating a multi-
dimensional data distribution, both efficiently and accurately, is a fundamen-
tal requirement in several important contexts. As the estimations must be
performed quickly, original data distribution can not be directly accessed, as
it would require a computational cost similar to those of the task that the es-
timates are required to support. The data summarization is a widely accepted
solution, which entails accepting a trade-off between estimation accuracy and
efficiency. In fact, the previously described problems can be supported by the
possibility of efficiently computing range queries, with approximate answers,
on the summarized data distribution. The storage space taken up by the sum-
marized representation of the actual data distribution is generally considered



18 1 Data summarization: application contexts

indicative of the query estimation costs. In fact, the larger the amount of infor-
mation to be processed, the larger the processing time. Therefore, the storage
space bound which can be invested in representing summarized data can be
evaluated on the basis of the estimation efficiency required by the systems.
Data summarization techniques aim at approximately describe the original
data within an imposed storage space bound and with the minimum possi-
ble loss of information. Therefore, the problem of efficiently and accurately
estimating data distribution, is translated into the following problem:

Problem 1.1 (Data summarization problem). Given a d-dimensional
data distribution D and a storage space bound B, summarize D in a lossy
representation D′ within storage space B minimizing a measure of the error
of the estimates performed on D′.

This problem, for the several important contexts in which it finds applica-
tions, has been largely studied, and several techniques for data summarization
have been proposed in the last three decades. A general overview of the these
technique will be provided in Chapter 2. In the following, some basic notations
which will be adopted throughout the rest of this thesis are introduced.

1.5.1 Basic notations

The d-dimensional data distribution D will be treated as d-dimensional array
of integers with volume nd (without loss of generality, all dimensions of D will
be assumed to have the same size).

The values contained in the array cells can represent different informa-
tion, depending on the application context. For instance, in the selectivity
estimation context, D represents the joint frequency distribution of a rela-
tion, that is each value associated to the point with coordinates 〈v1, . . . , vd〉
represent the number of d-tuples of the relation whose i-th attribute is equal
to vi (∀i ∈ [1..d]). In the OLAP analysis context, D represent the data cube,
therefore the values in its cells represent the values of the measure attribute
which has to be studied w.r.t. the d dimensional attributes by DSS tools. The
cells of D which do not correspond to any entry of the data distribution are
assumed to contain the value 0.

The number of non-null cell of D will be denoted as Nz. A one-dimensional
range ρi on the i-th dimension of D is an interval [l..u], with 1 ≤ l ≤ u ≤ n.
Boundaries l and u of ρi are denoted by lb(ρi) (lower bound) and ub(ρi) (upper
bound), respectively. The size of ρi will be denoted as

size(ρi) = ub(ρi) − lb(ρi) + 1.

A block b (of D) is a d-tuple 〈ρ1, . . . , ρd〉 where ρi is a one-dimensional range
on the dimension i, for each 1 ≤ i ≤ d. Informally, a block represents a hyper-
rectangular region of D, that is a sub-array of D. A block b of D with all zero



1.5 Generalization of the data distribution estimation problem 19

elements is said to be a null block. The volume of a block b = 〈ρ1, . . . , ρd〉 is
denoted by vol(b) and is given by

vol(b) = size(ρ1) × · · · × size(ρd).

Given a point in the multidimensional space p = 〈p1, . . . , pd〉, p will be said to
belong to the block b (written p ∈ b) if lb(ρi) ≤ pi ≤ ub(ρi) for each i ∈ [1..d].
A point p in b is said to be a vertex of b if for each i ∈ [1..d] pi is either lb(ρi)
or ub(ρi). The value associated to a point p in D will be denoted as D[p]. The
sum of the values associated to all points inside b will be denoted as sum(b).
Thus,

sum(b) =
∑
p∈b

D[p]. (1.6)

A block will be also referred to as multi-dimensional range, or simply range
(observe that a one-dimensional range is a d-dimensional range with d = 1).

The Minimal Bounding Rectangle (MBR) of a block b, is the block with
the minimum size which contains all the non null values of b.

A range query Q on D is specified by a block b and its answer is sum(b).
The answer of a range query can represent different information according
to the application context. For instance, in the case of selectivity estimation,
sum(b), with b = 〈ρ1, . . . , ρd〉, represents the number of tuples with the i-th
attribute Ai satisfying the conditions lb(ρi) ≤ Ai ≤ ub(ρi), with i ∈ [1..d],
jointly. In the case that the range b of the query corresponds to a single point
p = 〈p1, . . . , pd〉, i.e. lb(ρi) = ub(ρi) = pi ∀i ∈ [1..d], the query will be said
equality query and its answer is simply D[p].

The summarized data distribution will be denoted as D̃. Thus, the esti-
mation of the value associated to a point p will be denoted as D̃[p].

The cumulative distribution or partial sum distribution of D will represent
the d-dimensional array C defined on the same domain of D and such that,
for each point p = 〈p1, . . . , pd〉 ∈ D, being bp = 〈[0..p1], . . . , [0..pd]〉, it holds
C[p] = sum(bp). Informally, each point p of the cumulative distribution is
associated the sum of all the values associated to the points contained in the
sub-array of D having the points 0 = 〈0, . . . , 0〉 and p as two opposite vertices.

In order to measure the homogeneity of the data inside a block, the Sum
of Squared Errors (SSE) will be adopted, defined as follows:

SSE(b) =
∑
p∈b

(b[p] − avg(b))2 , (1.7)

where avg(b) = sum(b)
vol(b) is the average of values inside b (including the null

values).
The marginal distribution of a block b along the i-th dimension, denoted

as margi(b), is given by the “projection” of the internal data distribution of
b on the i-th dimension, and represents a one-dimensional array. Specifically,



20 1 Data summarization: application contexts

margi(b)[j] =
∑

p∈b∧p[i]=j

D[p]. (1.8)

Fig. 1.3 shows marginal distributions for a two-dimensional block.

Fig. 1.3. Marginal distributions

Of course, marginal distributions can be viewed as one-dimensional data
distribution, defined on the projection dimension.



2

Data summarization: state-of-the-art
techniques

As pointed out in the previous chapter, the problem of efficiently estimat-
ing range queries on multi-dimensional data with tolerable approximations
finds application in several important contexts. The data summarization has
been widely accepted as the main solution which can enable a effective trade-
off between accuracy and efficiency in estimations. A general overview of the
multi-dimensional data summarization techniques is presented in this chapter.
Simple techniques had been proposed since the late 1970s to the late 1990s.
After 1997, the interest in the data summarization techniques has consider-
ably increases and several more complex techniques have been proposed. The
interest in the problem was probably stimulated by the paper [7], published
in 1997 as a special issue on data summarization (addressed as data reduction
in that paper), of the IEEE Data Engineering Bulletin. That paper was born
from the initiative of Hellerstein, who gathered several of the most prominent
figures in several research fields for a wide discussion on the data summariza-
tion problem, as he was convinced of the necessity to unify apparently distant
approaches typical of different research fields in order to find an ultimate so-
lution to the still open problem of effectively summarizing multi-dimensional
data.

The data summarization techniques are usually roughly divided into two
broad classes: parametric and nonparametric techniques.

Techniques belonging to the former class adopt a mathematical model
to fit the data distribution, and aim at finding the the parameters of the
model which yield the best approximation of the actual data distribution.
As a model is usually characterized by few parameter, these techniques can
yield a large compression factor. On the other hand, data can be effectively
approximated only if they actually follow some model. Techniques based on
mathematical transforms, such as the Fourier or the wavelet transform, are
often classified among the parametric techniques [7]. After transforming data,
the original data distribution is represented by a model corresponding to the
anti-transform. The idea on which these techniques are based is that the



22 2 Data summarization: state-of-the-art techniques

adopted transform usually provide a sort of compaction of the information,
which enables to significantly reduce the amount of data to be accessed with
a relatively little loss of information.

Nonparametric techniques make no assumption about a possible model
followed by the overall data distribution, therefore they do not try to repre-
sent data by means of some concise formula. They rather try to summarize
the overall data set by means of pieces of “local” information. Among these
techniques, the most popular are the histogram- and the sampling-based ones.
Histogram-based techniques partition the data set and represent each subset of
data (called bucket) by means of some aggregate information (e.g., the count
or the sum of the values inside the bucket). Sampling-based techniques extract
a sample from the overall data set and use it to make inferences about the
original data set. It is worth noting that these techniques are strictly related
to the parametric ones. In fact, in order to infer estimates from summarized
data, it is necessary to make some assumption about the original local data
distribution (which is often assumed to be a uniform distribution) in the case
of histogram-based techniques and some assumption about the sample (which
is often assumed to be unbiased) in the case of sampling-based techniques.
However, other assumptions are possible as well. Another nonparametric sum-
marization technique is that based on kernel functions. A kernel function is
a continuous function K(x), usually symmetric w.r.t. x and unimodal (i.e., it
has one only peak, usually in x = 0), which integrates to 1 over its domain.
A kernel estimator can be viewed as a generalization of sampling, where each
sampling point spreads its information across its neighborhood according to a
kernel function. Therefore, if Xi is a sampling point, this point will give a con-
tribution equal to K(x) = 1

hK
(

x−Xi

h

)
to the approximate data distribution.

The parameter h is called bandwidth of the function, and controls how wide is
the neighborhood of a sample point Xi affected by Xi. The data distribution,
given a set of n samples, is represented by the weighted superimposition of
the respective n kernel functions. Kernel estimators have been widely studied
in statistics [129], resulting a very effective estimator, but they have not been
much investigates in the database related contexts.

In the following sections the main techniques belonging to both classes
will be discussed. In particular some of the parametric-, wavelet-, histogram-,
and sampling-based approaches which are most known in literature will be de-
scribed. Some interesting hybrid techniques, which combine the characteristic
of both classes, will be presented as well.

2.1 Mathematical models

Parametric summarization techniques assume that data distribution follows
a precise mathematical model. The model can be either a statistical distri-
bution (e.g., uniform, normal, etc.) or a polynomial function. The choice of



2.1 Mathematical models 23

parameters, representing either the statistical distribution or the polynomial
function, is generally achieved by minimizing a measure of the approximations.
The least square method is one of the most commonly adopted methods for
choosing the parameters of a model, which entails minimizing the sum of the
squared differences between original and approximate values. That is, if D is
the original data distribution and D̃P is the approximation of D according to
a mathematical model with an assignment P to its parameters,

SSEP =
∑
i∈D

(D[i] − D̃P [i])2 (2.1)

has to be minimized. For example, if a data set is supposed to follow a normal
distribution, it will be represented simply by means of the parameters repre-
senting the average µ and the standard deviation σ of the normal distribution
function adopted as mode, and an assignment to µ and σ which minimize
Equation 2.1 must be found.

Even though a single value can be estimate quickly, a naive approach for
estimating range queries, based on the estimation of all the values inside the
range, could be infeasible. There are two possibilities to perform efficiently
the estimation of range queries: computing the integral of the mathematical
function over the range of the query or approximating the cumulative distri-
bution instead of the original data distribution, and the estimating only the
values coinciding with the vertices of the range.

Parametric techniques based on statistical models perform very well when
data actually follow, even approximately, some model. For instance, when
the creation of tuples in a database depends on real world phenomena which
follow some known distribution, parametric techniques based can successfully
accomplish the task of approximating with good accuracy actual data. In this
cases, the achievable compression ratio is very high, as is it possible to describe
even large data sets by means of a few parameters. On the counterpart, finding
an effective model for a data set could be a hard task, and it is quite unlikely
to effectively approximate a data distribution by means of wrong models. In
addition, real data rarely follow a precise known statistical distribution.

Regression models are the most adopted mathematical models and they
are more flexible than the statical ones. Linear regression is the most simple
kind of regression model, and it assumes that data associated to an attribute
X are represented by D[x] = q + mx, where x belongs to the domain of
the attribute X. Multiple regression techniques can model multi-dimensional
data distributions. For instance, D[〈x1 . . . xd〉] = q + m1x1 + . . .mdxd is a
multiple linear regression model for a d dimensional data distribution, where
xi is a value that the i-th attribute can assume. Nonlinear regression models
enable to describe the data distribution D by adopting different powers of the
attribute values, an possibly by multiplying the values of different attributes
(e.g., D[〈x1, x2〉] = q +m1x

2
1 +m2x1x2.

A possibility which often reduces the hardness to fit data distributions by
means of analytical models consists in applying a suitable mathematical trans-



24 2 Data summarization: state-of-the-art techniques

form to the data, changing the domain in which they are represented. Even
though the transform itself does not reduce the amount of information to be
stored, it often provides an effective “information compaction” which make
easier discriminating of the most important “pieces” of information1. The
original data distribution will be represented by means of the anti-transform
whose parameters are only the most “important” values in the transform do-
main. For example, a time series can be represented by means of a Fourier
series and approximated by cutting off to zero the coefficients of the Fourier
series which least contribute to the signal power. As the transform provides
energy compaction, discarding coefficients of the fourier series yields a lower
loss of energy than disregarding the same number of data in time domain.
These techniques are called transform-based techniques, and they can repre-
sent a subclass of the parametric techniques by distinguishing from the direct
parametric techniques which directly exploit a model to approximate the data
distribution.

In the context of multimedia data compression, mathematical transforms
have been successfully exploited. For instance, MPEG, JPEG and MP3, are
currently the standard formats for exchanging video, image and audio files,
respectively, on the web, due to their excellent tradeoff between quality and
storage space occupancy. The basic principle on which these lossy compression
techniques are based, is the low sensitivity of human senses to some frequency
components of the perceived signal spectrum. Removing the information asso-
ciated to these frequencies does not affect significantly the perceived quality of
the signal, but enable a substantial reduction of the information to be stored
and thus the file size. Therefore, the majority of the multimedia compression
techniques first compute the spectrum of the signals, usually by means of
the Discrete Cosine Transform (DCT), and then remove those components
which are less significant, by avoiding storing (i.e., implicitly setting to zero)
those coefficients that in the anti-transform would add the least important
components to the signal. The idea of employing the same techniques for
summarizing general data, in particular in the contexts of selectivity estima-
tion and OLAP analysis, was not applied until the late 1990s. In [7], wavelets
were reported for the first time as a possible technique for data summariza-
tion in the context of approximate data analysis. Wavelets enable even better
performances in compressing some kind of data than the DCT: in fact, the
image compression format JPEG2000, based on wavelet transform, has been
proved to perform better than the JPEG format, although it has not become
the standard on the web as the majority of web browsers do not support it.
Wavelets present some advantages w.r.t. DCT. Wavelet coefficients are local-
ized (i.e., are related to local portions of the data distribution) whereas each
DCT depends on the overall data domain. Thus, wavelets enables to repre-

1 The same transforms, when applied to physical signals, provide an effective energy
compaction which enable to discriminate the components of the signal associated
with the greatest amount of energy.



2.1 Mathematical models 25

sent with few coefficients even large local spikes, which instead affects a large
number of DCT coefficients. Furthermore, a data distribution of size n can be
decomposed according to wavelet transform in time O(n), whereas no algo-
rithms for computing the DCT in time less than O(n log n) are known, even
though Ω(n log n) has not been proved to be a lower bound for the complexity
of the DCT computation problem.
Indeed, there exists a variant of the DCT, namely the Short-time Discrete Co-
sine Transform (STDCT), with properties similar to those of wavelets, such
as coefficient localization and efficient computational time O(n) [82], even
though its use has never been investigated in the database-related contexts.

Wavelet-based summarization techniques will be described in the follow-
ing section. Now some of the most important parametric summarization tech-
niques proposed in literature will described.

A seminal work in the context of query optimization was proposed by
Selinger et al. in 1979 [116]. In that work, the authors described how their ex-
perimental DBMS, System R, which had been under development at IBM San
Jose Research Laboratory since 1975 and it is the ancestor of DB2, worked
in selecting execution plans for queries. The system used simple statistical
information, such as the minimum and maximum value of each attribute do-
main, and assumed that each intermediate value was present with the same
frequency. Therefore, they modelled tuple frequency distribution w.r.t. each
attribute data domain by means of a uniform distribution (uniform frequency
distribution assumption, see Equation 1.4). Furthermore, they modelled the
joint distribution of tuples w.r.t. different attributes assuming no correla-
tion among attributes (attribute value independence assumption, see Equa-
tion 1.5).

Thus, the only parameters to be stored, in order to estimate the selectivity
of predicates on a single attribute Xi of a relation, were the highest and lowest
values of the attribute domain, supi and infi, respectively, and the number
of tuples T in the relation. On the basis of these information, and on the
basis of the uniform frequency distribution assumption, the number of tuples
satisfying the condition li ≤ Xi ≤ ui is estimated as T · ui−li+1

supi−infi+1 .
Unfortunately, the uniform distribution model has always been considered

unlikely to effectively model real data distributions. Zipf’s law and Pareto’s
principle are rules of thumb which hold in several real life contexts, thus
influencing the characteristics of information as well, and describe several
natural phenomena as being far from following uniform distributions.

Specifically, the American linguist and philologist Zipf in 1940s observed
that in a text written in a natural language containing Nz distinct words,
ranking them on the basis of the number of their occurrences in the text, the
number of occurrences f(i) of the i-th word is approximately proportional to 1

i
[138]. On the basis of his studies, the specific inverse exponential distribution
represented by



26 2 Data summarization: state-of-the-art techniques

f(i) =
K

iz
, i ∈ [1..Nz], with K =

Nz∑
i=1

1
iz
, (2.2)

is called Zipf distribution. In the case that the distribution is adopted to model
ranked word occurrences, on the basis of Zipf’s studies, z ≈ 1.

Even though this law states the unsuitability of models based on uniform
distribution in some contexts, it gives a precise model which can approximate
with good accuracy data distributions in the same contexts. For instance,
Zipf distribution was proposed to model indexed files by Fedorowicz [41, 42],
Schuegraf [115], and Siler [119].

The need to take into account different statistical distribution was pro-
posed in several works between the late 1970s and the early 1980s. For in-
stance, Hill studied the database performances for Poisson, Uniform and Zipf
distribution of the index access key [63]. Christodoulakis in his PhD thesis [27]
suggested to model attribute value frequencies by means of univariate Pear-
son distributions, which provide a range of distributions from the uniform to
the normal one. In particular, in [28] he showed that, many attributes fol-
low unimodal distributions, i.e. distributions with one only peak, such as the
normal one, that can be approximated by a family of distributions including
the Pearson types 2 and 7 and the normal distribution. The parameters (i.e.,
the various moments) of the models can be evaluated in a single scan and
dynamically maintained.

In [88] Lefons et. al. proposed to store statistics of data by representing
the distribution of attribute values by means of linear combinations of the
first k Legendre’s polynomials. They based the proposal on the observation
that common polynomials of large degree may be subject to large oscillations,
while Legendre polynomials are more “stable”.

Fedorowicz in [43] proposed to adopt multiple linear regression models to
approximate the frequency distribution of words in a bibliographic system.
As the word occurrences are known to follow a Zipf distribution, he proposed
to model the actual word distribution by means of a nonlinear regression
model, and to apply the logarithm in order to transform the model into a
multiple-linear-regression-based one.

In [122] Sun et al. proposed a parametric technique for approximating
the attribute value frequencies by means of multiple regression models. For
approximating the frequency distribution of a single attribute value Xi, which
is represented by an array Di[x] defined on a discrete domain v1..vm, they
adopted a regression model based on polynomial continuous functions of the
following form

fi(x) =
k1∑

i=−k2

cix
i.

The degree of the polynomial function is k1+k2. They found that by adopting
values of k1 between 0 and 6 and values of k2 between 1 and 4 a large variety
of different data could be approximated with good accuracy. The choice of



2.1 Mathematical models 27

the model coefficients ci (i ∈ [−k2..k1]) was performed by means of the least
square method, thus minimizing

m∑
j=1

(Di[vj ]) − fi(vj))
2
.

The number tuples satisfying the condition l ≤ Xi ≤ u (l ≥ infi and u ≤ supi)
can the then estimated as ∫ u

l
fi(x)∫ vm

v1
fi(x)

.

Observe that the denominator is a constant, therefore it must not recomputed
at each estimation. As regards the joint distribution of d attributes x1 . . . xd,
they proposed a multiple regression model, still based on polynomial func-
tions, defined on d variables. The coefficients to be computed are those to be
multiplied for all the possible terms xg1

1 · xg2
2 · · · · · xgd

d with gi ∈ [−k2..k1].
The estimation of the number of tuples satisfying several condition on differ-
ent attributes jointly can be performed by means of a d-multiple integral. Of
course, the cost of performing estimation when the dimensionality increases,
but also the best coefficients for the model, becomes infeasible.

Also in [25] Chen and Roussopoulos proposed to adopt a polynomial func-
tions for approximating attribute value frequency distributions. They sug-
gested to adopt 6th degree polynomial functions as model, thus they posed
k2 = 0 and k1 = 6 according to the proposal in [122]. The novelty of the
method relied in the use of query feedbacks for updating the approximating
function coefficients, without scanning the actual data. As queries are per-
formed, the exact answers are used as feedback, at no extra cost, for tuning
the coefficients of the model. In addition, the possibility to weight feedbacks,
giving higher relevance to more recent feedbacks, enable a very efficient update
of the coefficient in order to adapt them to updates in data actual distribution.

In [86] Korn et al. proposed to approximate continuous univariate and
multivariate data distributions by means of splines. In particular, they pro-
posed to partition the data domain by means of an algorithm for the knot
placement of a kernel estimator, and then to approximate data inside the so
obtained ranges by means of cubic splines.

In [117] Shanmugasundaram et al. proposed a parametric-like technique
which instead of adopting one only function for modelling the overall data
distribution, it adopts several localized gaussian distributions. Specifically, by
means of the Expectation-Maximization (EM) clustering technique [10], they
proposed to find a certain number of data clusters, and to approximate each
cluster by means of a d-dimensional gaussian distribution adopting 1 + 2d
coefficient for representing the covariance matrix which is approximated by a
diagonal matrix. In the case that a measure of the approximation of a cluster
is below a threshold, the cluster is split and more gaussian models are adopted
to approximate it.



28 2 Data summarization: state-of-the-art techniques

2.2 Discrete Wavelet Transform

The word wavelet is a translation from the French word ondelette, that was
coined in the early 1980s by the French geophysicist Jeán Morlet. The word
derives from the particular kind of functions, having the form of fast decay-
ing and localized waves, that are used as basis from a class of mathematical
transforms. Wavelet-based transforms are suitable both for continuous func-
tions and discrete series. In this context, the attention will be focused on the
Discrete Wavelet Transform (DWT), as this is the suitable one for approxi-
mating discrete data distributions on discrete domains.

2.2.1 Basic mathematical background

By means of a continuous wavelet transform, it is possible to represent a
function f(t) as a linear combinations of a set of functions derived by dilating
and translating (dilations and translations will be defined in the following) a
function ψ(t), called mother wavelet, and a scaling function φ(t) called father
wavelet. In the discrete context, these functions are simply vectors and will
be denoted as ψ[·] and φ[·].

By applying the DWT, any vector v of size n = 2k can be represented as

v[t] = s00 · φ[t] +
log n−1∑

i=0

2i−1∑
j=0

dij · ψij [t], 0 ≤ t < n (2.3)

where the vectors φ and ψij have the same length n of v, ψ00 coincides with
ψ and, for other values of i, j, ψij represents the j-th translation of the i-th
dilation of ψ. Decomposing v entails computing the coefficients s0 and dij .

Equation 2.3, can be also written as

v = s00 · φ+
log n−1∑

i=0

2i−1∑
j=0

dij · ψij (2.4)

The set of vectors φ and ψij is called basis, and it is univocally determined
by the mother and father wavelet. Several wavelet transforms can be defined,
depending on the set basis adopted in the transformation.

The first proposed DWT largely precedes the introduction of the word
wavelet, and dates back to 1909, when the Hungarian mathematician Alfréd
Haar introduced a mathematical transform based on the use of stepwise func-
tions as mother and father wavelet: in the discrete context, the father wavelet
φ is a vector with φ[t] = m for each t ∈ [0..n−1] and the mother wavelet ψ
is a vector such that ψ[t] = m for t ∈ [0..n2 −1] and ψ[t] = −m for t ∈ [n

2 ..n).
In order to simplify the definition of the other basis vectors, ψ[t] = 0 for
t /∈ [0..n−1] will be assumed.

In Fig. 2.1 the father (a) and mother (b) wavelets of the Haar basis are
depicted. Of course, as remarked before, in the discrete context φ and ψ are



2.2 Discrete Wavelet Transform 29

0

m

-m

n0

�(t)

n0

�(t)

0

m

-m

n/2 n0

� (t)

0

m

-m

n/2

10

n/4

1

1

n0

� (t)

n/2

11

3n/4

0

m

-m

1

1

(a) (b) (c) (d)

n0

� (t)
20

0

m

-m

2

2

n0

� (t)
21

0

m

-m

2

2

n0

� (t)
22

0

m

-m

2

2

n0

� (t)
23

0

m

-m

2

2

(e) (f) (g) (h)

Fig. 2.1. Haar basis: father wavelet (a) and mother wavelet (b), 1st (c) and 2nd
translation of the first order dilation of mother wavelet, 1st (e), 2nd (f), 3rd (g) and
4th (h) translation of the second order dilation of mother wavelet

not functions defined on the continuous as depicted in the figure, but vectors.
The remaining vectors are obtained by dilating and translating of the mother
wavelet. Specifically, ψij [t] is equal to mi

m ·ψ[2i ·t−j · n
2i ]. the factor 2i multiplied

by t yields the dilation of the i-th order of the mother wavelet and the addend
−j · n

2i yields a translation of the dilations.
Figures 2.1 (c) and (d) depict the two possible translations of the first

order dilating of the mother wavelet and Figures 2.1 (e), (f), (g) and (h)
depict the four possible translation of the second order dilating. The highest
order of dilating is the (logn − 1)-th one, which yields vectors with all but
two contiguous elements null. Observe that, the definition of ψij requires that
the vector has dyadic length (i.e., a number of elements equal to a power of
2). Several solutions have been adopted in order to generalize the DWT to
vectors of non-dyadic length. The most simple one is the zero-padding, which
entails extending the vector with the minimum number of zeros which makes
the vector of dyadic length.

It is possible to show that the vectors which constitute the basis are mu-
tually orthogonal. This property ensures that any vector can be represented
as linear combinations of these vectors.

The multiplicative constant of each vector is chosen such that each
vector has unitary modulus. It is easy to show that m = m0 = 1√

n
, and

mi =
√

2 ·mi−1 for 0 < i < log n. These multiplicative factors makes the
Haar basis orthonormal. The normalization of vectors in the basis ensures
that the amount of information associated to each product between a coeffi-



30 2 Data summarization: state-of-the-art techniques

cient of the transform and its corresponding vector of the basis depends only
on the coefficient magnitude.

W =

2
666666666666666664

+

√
(2)

4
+

√
(2)

4
+ 1

2
0 +

√
(2)

2
0 0 0

+

√
(2)

4
+

√
(2)

4
+ 1

2
0 −

√
(2)

2
0 0 0

+

√
(2)

4
+

√
(2)

4
− 1

2
0 0 +

√
(2)

2
0 0

+

√
(2)

4
+

√
(2)

4
− 1

2
0 0 −

√
(2)

2
0 0

+

√
(2)

4
−
√

(2)

4
0 + 1

2
0 0 +

√
(2)

2
0

+

√
(2)

4
−
√

(2)

4
0 + 1

2
0 0 −

√
(2)

2
0

+

√
(2)

4
−
√

(2)

4
0 − 1

2
0 0 0 +

√
(2)

2

+

√
(2)

4
−
√

(2)

4
0 − 1

2
0 0 0 −

√
(2)

2

3
777777777777777775

Fig. 2.2. Matrix representation of the DWT Haar basis for vectors of size 8

The n vectors φ and ψij can be assembled in order to form a matrix
W = [φT , ψT , ψT

10, ψ
T
11, . . .] of size n×n. In Figure 2.2 the matrix representing

the Haar basis for vectors of length 8 is depicted. If also the n coefficients s00
and dij are assembled into a vector c = [s00, d00, d10, d11, . . .], Equation 2.4
can be written as

W × cT = vT . (2.5)

2.2.2 Fast Wavelet Decomposition

The wavelet decomposition could be computed by solving the system of n
linear equations defined by Equation 2.5. The mutual orthogonality of vectors
in W ensures that for each v there exists one only decomposition c, corre-
sponding to the solution of the system of equations. Of course, computing the
wavelet transform by solving Equation 2.5 would be infeasible for large values
of n. Indeed, the wavelet decomposition can be computed very efficiently by
means of a hierarchical bottom-up technique, without solving Equation 2.5.
As remarked before, each coefficient di�j , with i� = log n− 1, affects exactly
one pair of values of v, depending on the value of j. Specifically, di�j gives
a positive contribution to v[2j] and a negative one to v[2j + 1]. Therefore,
defining si�j = v[2j]+v[2j+1]√

2
and di�j = v[2j]−v[2j+1]√

2
for each pair of con-

tiguous elements 〈v[2j], v[2j + 1]〉 (0 ≤ j < n/2), it is immediate to show
that v[2j] = si�j [t]√

2
+ di�j√

2
and v[2j + 1] = si�j [t]√

2
− di�j√

2
. By imposing that

the contribution ±di�j to the pair 〈v[2j], v[2j + 1]〉 comes exactly from the
last n/2 coefficients cn/2 . . . cn−1, it is necessary that the contribution si�j

comes from the first n/2 coefficients c0 . . . cn/2−1. These coefficients can be
recursively computed by adopting the same strategy, considering the vector
[si�0, . . . si�n/2−1] as new vector of size n/2 to be decomposed.



2.2 Discrete Wavelet Transform 31

Example 2.1 Consider the vector v = [7, 5, 1, 3, 8, 2, 8, 6] of length n = 8. At
the first step, v is decomposed into

s20 = v[0]+v[1]√
2

= 6
√

2, d20 = v[0]−v[1]√
2

=
√

2,

s21 = v[2]+v[3]√
2

= 2
√

2, d21 = v[2]−v[3]√
2

= −√
2,

s22 = v[4]+v[5]√
2

= 5
√

2, d22 = v[4]−v[5]√
2

= 3
√

2,

s23 = v[6]+v[7]√
2

= 7
√

2, d23 = v[6]−v[7]√
2

=
√

2.

The four coefficients d20, d21, d22 and d23 correspond to the last four co-
efficients of the decomposition, namely to c4, c5, c6 and c7. The remaining
coefficients of the decomposition are computed by decomposing the vector

s2 = [s20, s21, s22, s23] = [6
√

2, 2
√

2, 5
√

2, 7
√

2],

thus obtaining

s10 = s2[0]+s2[1]√
2

= 8, d10 = s2[0]−s2[1]√
2

= 4,

s11 = s2[2]+s2[3]√
2

= 12, d11 = s2[2]−s2[3]√
2

= −2.

d10 and d11 are assigned to the coefficients c2 and c3, respectively.
Finally, s1 = [s10, s11] = [8, 12] is decomposed into

s00 = s1[0]+s1[1]√
2

= 10
√

2 and d00 = s1[0]−s1[1]√
2

= −2
√

2

and the decomposition ends, assigning s00 to c0 and d00 to c1. The resulting
vector representing the transform is

c = [10
√

2,−2
√

2, 4,−2,
√

2,−√
2, 3

√
2,
√

2].

By inverting the decomposition process, it is possible to reconstruct the
original values of v. In fact, from s00 = c0 and d00 = c1 it is possible to
reconstruct

s1 = [ c0+c1√
2
, c0−c1√

2
],

from s1 and d1 = [c2, c3] it is possible to reconstruct

s2 = [
c0+c1√

2
+c2√

2
,

c0+c1√
2

−c2√
2

,
c0+c1√

2
+c3√

2
,

c0+c1√
2

−c3√
2

] =

[ c0
2 + c1

2 + c2
√

2
2 , c0

2 + c1
2 − c2

√
2

2 , c0
2 + c1

2 + c3
√

2
2 , c0

2 + c1
2 − c3

√
2

2 ]

and finally from s2 and d2 = [c4, c5, c6, c7] it is possible to reconstruct v, which
results v = (W × cT )T . �

In both the decomposition and reconstruction phases, it easy to observe
that the number of addition or subtraction and division performed is 2·(n−1),
where n is the length of v, thus the complexity of performing both the DWT
and the anti-transform is O(n). In Fig. 2.3 the algorithms for computing the
wavelet transform (a) and anti-transform (b) are reported.



32 2 Data summarization: state-of-the-art techniques

INPUT v: a vector of length n;

OUTPUT c: a vector of length n rep-
resenting the Haar dis-
crete wavelet transform
of v;

begin
c = new double[n];
for (i ∈ {0..n−1}) do

c[i]=v[i];
l=n;
while (l > 1) do begin

s = new double[l/2];
d = new double[l/2];
for (i ∈ {0..l−1}) do begin

s[i]= c[2i]+c[2i+1]√
2

;

s[i]= c[2i]−c[2i+1]√
2

;

endfor;
for (i ∈ {0..l−1}) do begin

c[i] = s[i];
c[n/2+i] = d[i];

endfor;
l=l/2;

endwhile;
return c;

end;

INPUT c: a vector of length n;

OUTPUT v: a vector of length n
representing the Haar
discrete wavelet anti-
transform of c;

begin
v = new double[n];
for (i ∈ {0..n−1}) do

v[i]=c[i];
l=1;
while (l < n) do begin

s = new double[l];
d = new double[l];
for (i ∈ {0..l−1}) do begin

s[i] = v[i];
d[i] = v[l+i];

endfor;
for (i ∈ {0..l−1}) do begin

v[2i]= s[i]+d[i]√
2

;

s[2i+1]= s[i]−d[i]√
2

;

endfor;
l=l·2;

endwhile;
return v;

end;

(a) (b)

Fig. 2.3. Algorithms computing the Haar discrete wavelet transform (a) and anti-
transform (b)

2.2.3 Querying wavelet coefficients

Observe that, each row of W (see Fig. 2.2) contains exactly log n + 1 non-
null values, therefore, each element of v, according to Equation 2.5, can be
reconstructed by summing the weighted contribution of exactly logn+ 1 co-
efficients.

The mother wavelet function dilating strategy for defining the basis, im-
pose an implicit hierarchy in the coefficients representing the wavelet decom-
position. Therefore, they can be represented by a hierarchical structure, in
particular by a perfect binary tree.

In Figure 2.4 (a) the tree representing the organization of the coefficients
resulting from the transform of a vector of length 8 is depicted. Observe that,



2.2 Discrete Wavelet Transform 33

+

7 5 1 3 8 2 8 6

+

+ +

-

--

- - - -+ + + +

1c

v

4

2

4

2

2

1

0c

2c 3c

7c6c5c4c
2

2

(a)

INPUT c: a vector of length n representing
the Haar discrete wavelet trans-
form of a vector v;

i: an index between 0 and n − 1;

OUTPUT s: the value v[i];

begin
p = 1;
s = c[0];
inf = 0; sup = n-1;
while (inf < sup) do begin

med = inf+sup
2

;
if (inf ≤ med) then begin

s = s+c[p]√
2

;

p = 2p;
sup=med;

else begin

s = s−c[p]√
2

;

p = 2p + 1;
inf=med+1;

endif ;
endwhile;
return s;

end;

(b)

Fig. 2.4. Hierarchical representation of the coefficients and weights (on the left)
resulting from a wavelet transform of a vector v of size 8 (a) and algorithm for
computing an equality query on the wavelet coefficients (b)

the coefficient c0 affects all the elements in v, giving them a contribution equal

to c0 ·
(

1√
2

)log n

. All the other coefficients ci (1 ≤ i < n) affects only the leaves
of the subtree rooted at ci, giving them a positive or negative contribution

equal to
(

1√
2

)log n−�log i�
, depending on whether the elements are leaves of

the left- or the right-subtree, respectively, rooted at ci.
From the hierarchical representation it is clear that the value v[i]can be

reconstructed by traversing the tree from the root to the leaf c�(n+i)/2�, and
by multiplying at each level the value of the traversed coefficient by a positive
or negative constant, whose magnitude depends on the level and whose sign
depends on the direction of the traversing. Therefore, an efficient algorithm
can reconstruct a single value in time O(log n). This algorithm is depicted in



34 2 Data summarization: state-of-the-art techniques

Fig. 2.4 (b), where the coefficient tree is assumed to be represented by levels
inside a vector c.

A very interesting property of the wavelet decomposition, which derives
from the hierarchical characteristic of the decomposition, consists in the pos-
sibility to compute also sum range queries in time O(log n). In fact, it can
be shown that the sum of elements within a range [l..h] depends only on the
coefficients traversed from two paths starting from the root and reaching l
and h. Thus, there is no need to reconstruct all the original values contained
in the range [l..h] in order to compute the answer to a sum-query on the same
range. This is an advantage w.r.t. the other parametric techniques which, in
order to avoid reconstructing all the values in a range of a query, entail either
to compute the integral of the approximating function or to approximate the
cumulative data distribution.

2.2.4 Wavelet coefficients thresholding

As the coefficients c representing the transformed vector v enable the exact
reconstruction of v, no information has been lost, thus no summarization has
been achieved. In fact, the coefficients are still represented by a vector of
length n as the original data vector v. In order to summarize the data only
the m coefficients of c whose “importance” is evaluated above a threshold are
retained. The others are not stored and are usually implicitly assumed to be
zeros. The number m depends usually on the desired compression ratio. The
choice of the m coefficients to be maintained depends on a metric representing
the approximation error, that has to be minimized. For example, the SSE
could be minimized (see Equation 2.1). An important property shared by all
the wavelet transforms, but only if they adopt an orthonormal basis, is that the
SSE is minimized simply choosing them coefficients with the larger magnitude
(absolute value) [120]. This can be intuitively explained considering that the
“importance” of the contribution of each coefficient to the reconstruction of
the original data depends only on its value, as coefficients are all associated to
vectors in the basis with the same unitary modulus. Therefore, maintaining
the coefficients with larger magnitude enables maintaining the most important
pieces of information.

However, different coefficient threshold strategies have been proposed, aim-
ing at minimizing other error metrics, and they will be discussed in the fol-
lowing.

2.2.5 Multi-dimensional DWT

The Haar wavelet transform can be extended to the multi-dimensional data
domains using two different methods, namely the standard and nonstandard
multi-dimensional Haar transform. The multi-dimensional transform can be



2.2 Discrete Wavelet Transform 35

obtained on the basis of the one-dimensional DWT. In the case of the stan-
dard transform, the multi-dimensional data are processed according to one-
dimensional segment along each direction. Specifically, in the d-dimensional
case, for the first dimension, all ranges of size n × 1 × · · · × 1, which repre-
sent one-dimensional arrays, are transformed according to the one-dimensional
DWT. The resulting d-dimensional array is re-transformed by applying the
DWT to alle ranges of size 1×n×· · ·×1, and so on, until the d-th dimension
is processed. The nonstandard transform, works similarly, but apply only one
DWT step at time along each dimension. That is, the first dimension is pro-
cessed by applying the first step of the DWT, then the second dimension is
applied the first step, and so on until the d-th dimension. Then, the process is
recursively applied to the sub-array of size (n/2)d corresponding to the block
〈[0..n/2 − 1], . . . , [0..n/2 − 1]〉.

For instance, consider a two-dimensional array D of size n × n, and let
D[i, ∗] denote the i-th row and D[∗, j] denote the j-th column of the matrix
representing D. According to the standard approach, first the one-dimensional
DWT is applied to D[0, ∗],D[1, ∗], . . . ,D[n−1, ∗], thus obtaining a new matrix
D′. Then, the DWT is applied toD′[∗, 0],D′[∗, 1], . . . ,D′[∗, n−1], thus obtain-
ing a matrix D” which correspond to the final matrix of wavelet coefficients.
According to the nonstandard approach, only the first step of the DWT is ap-
plied to D[0, ∗],D[1, ∗], . . . ,D[n−1, ∗], thus obtaining a new matrix D′. Then,
only the first step of the DWT is applied to D′[∗, 0],D′[∗, 1], . . . ,D′[∗, n− 1],
thus obtaining a matrix D”. Now, the same process is applied to the sub-array
corresponding to the block 〈[0..n/2 − 1], [0..n/2 − 1]〉 of D”, and so on, until
the array to be processed is reduced to one only cell (a 1 × 1 matrix).

No one of the two techniques has ever been proved to result in better
accuracy than the other (after the coefficient threshold), but it can be shown
that the nonstandard one can be computed more efficiently.

The wavelet transform of a d-dimensional data array D, of size nd, is a
d-dimensional wavelet-coefficient array C of size nd. Each coefficient of C, like
in the one-dimensional case, is associated to a range of the data domain, which
is called support region. In the one-dimensional case, the support region is a
one-dimensional range (i.e., the range where the correspondent basis vector is
not null), in the d-dimensional case, each cell of C gives a contributions to a
d-dimensional range of values in D.

The support regions of each coefficient, in the multi-dimensional case, de-
pends on the type (standard or nonstandard) of transform. The basis of the
multi-dimensional wavelet transform, is a set of nd d-dimensional arrays, each
of size nd and assuming non null values only in its support region. Each array
of the basis is associated to exactly one coefficient of C. The support regions of
the basis for a 4× 4 data domain are depicted in Fig 2.5, for the standard (a)
and nonstandard (b) transform. The support region of the coefficient C[i, j]
is that corresponding to the null null region of W [i, j], which is partitioned in
positive- and negative-contribution sub-regions.



36 2 Data summarization: state-of-the-art techniques

W=

+

-

+ -+

+

+

-
-

+ -

+

+

-
-

+

+

-
-

+

+

-
-

+

+

-
-

0 1 2 3

+

-

+

-
+

+

-
-

+

+

-
-

+ -

+

+

-
-

+

+

-
-

0

1

2

3

W=

+

-

+ -+

+

+

-
-

+

-

+

-
+

-

+

-

+ -

+ -

+ -

+ -

+

+

-
-

+

+

-
-

+

+

-
-

+

+

-
-

0 1 2 3

0

1

2

3

(a) (b)

Fig. 2.5. Coefficient support region for multi-dimensional standard (a) and non-
standard (b) Haar wavelet transform of a 4 × 4 two-dimensional array

2.2.6 Wavelet-based summarization techniques

The first work proposing the adoption of a wavelet transform to the context
of approximate query answering was proposed by Matias et. al. in 1998 [99].
Their proposal consisted basically in applying the DWT to the cumulative
distribution C, instead of the original vector D. According to their results, ap-
proximating C yields lower error rates than approximating D. Queries can be
evaluated by accessing exactly two values on the approximate representation
of C (in the one-dimensional case). They also found that the use of Haar ba-
sis yields approximations comparable to these yielded by the other techniques
(i.e., histograms) which represented the state-of-the-art at that time. Instead,
they found that DWT adopting linear basis (i.e., piecewise linear functions as
basis) performed better, especially on range queries. Their results were proba-
bly due to the fact that the cumulative distribution is monotone nondecreasing
and, intuitively, it can be locally fit better by linear than constant functions.
They also proposed four heuristics for selecting the m coefficients which mini-
mize a measure of the error on a query workload (they proposed three different
measure of the error). The first heuristic consisted in selecting the m largest
in magnitude coefficients. Observe that this deterministic approach is not still
optimal, as their adopted basis is not orthonormal, the measure can be dif-
ferent from the SSE and the query workload can be different from the set
of all the possible equality queries. The other proposed approaches consisted
in choosing deterministically the m′ �= m coefficients with largest magni-
tude, and then greedily selecting/unselecting those coefficients which yield
the maximum decreasing/minimun increasing in the measure of the error, un-
til the number of retained coefficients is equal to m. Finally, they proposed
a straightforward extension to multi-dimensional contexts, by applying the
standard multi-dimensional transform. This solutions entails computing the
cumulative distribution of a multi-dimensional array, which can result huge



2.2 Discrete Wavelet Transform 37

in volume and it could not fit in main memory. Another disadvantage of ap-
proximating the cumulative distributions consists in the inefficiency in query
evaluation. In fact, in order to answer a range query, it is necessary to com-
pute 2d values, corresponding to the vertices of a d-dimensional range (2d′

values, if d′ dimensions if specified by the query) which entails the traversing
of the coefficients tree along 2d paths, while computing any range query on
the decomposition of original data would entail the traversing of only 2 paths.

To overcome the problem of limited main memory, Vitter et al., in the same
year proposed an I/O-efficient strategy to be adopted when disk accesses are
needed in order to compute the wavelet transform. In [127] they proposed to
partition the array in chunks representing blocks of cells and then storing each
chunk into a secondary memory page. Indeed, their proposal was limited to
a logical chunk, which assumes that cells are stored into a one-dimensional
array according to a linear ordering2 of the multi-dimensional space. Accord-
ing to this assumption, multi-dimensional array chunks are mapped to blocks
of contiguous cells of the one-dimensional array. They showed that it is pos-
sible to compute the DWT over the multi-dimensional array by means of
O(nd

B logM/B
nd

B ) disk accesses, where nd is the size of the multi-dimensional
array to be transformed, M is the size of the main memory and B is the disk
page size. They also presented a theorem which states that it is possible to
reconstruct each of the original cells of the array in time O(min{log nd,m}),
where m is the number of retained coefficients. Therefore, the complexity of
answering range queries according to their proposal is O(2d ·min{log nd,m}),
as it is necessary to compute the approximate values of 2d cells. Besides the
algorithms regarding the decomposition and querying of the data, they pro-
posed an improvement related to the accuracy. Specifically, they proposed to
decompose the logarithm of the cumulative values, as this yields better ap-
proximations in terms of relative (instead of absolute) errors affecting range
query estimations.

Even though [127] represents a step ahead in the study of the practical
feasibility of the wavelet transform in the multi-dimensional context, it only
scraped the wall representing the problems deriving from the management of
physical multi-dimensional arrays. In fact, even in real cases, without applying
to the high-dimensionality contexts, the multi-dimensional array could not fit
also in secondary and even tertiary memory. Of course, the density of such
an array would be very low (the size of the array, not the number of tuples,
increases exponentially in the number of dimensions). However, the algorithms
proposed in [127] do not take into account the sparsity of the array, and their
complexity depends on nd, the number of cells, even thought the majority of
them contains null values.

A significant improvement was introduced in the work of 1999 [128], in
which Vitter and Wang abandoned the idea of working on cumulative values,

2 although it is not explicitly stated, from a figure in that paper depicting an
example, it seems that they adopted the Z-ordering.



38 2 Data summarization: state-of-the-art techniques

thus exploiting the sparseness of data. They proposed two algorithms perform-
ing the multi-dimensional DWT in time O(Nz

B logM/B
nd

B ), where Nz is the
number of non-null cells of the d-dimension al array of size n. These algorithms
reduce dramatically the decomposition time, as they reduce the complexity
of a factor equal to n

Nz
, which in real cases can be several orders of magni-

tude large. The algorithms basically partition the d dimensions into groups
such that the “slices” of the d-dimensional array built on the dimensions of
each group can fit in main memory. Each slice is decomposed according to the
standard multi-dimensional wavelet transform along the dimensions of the
considered group. In order to limit the spatial complexity, which can exceeds
O(Nz) as at each one-dimensional pass of the DWT the number of non-null
wavelets coefficients can be larger than the original non-null values, they cut-
off those wavelet coefficients which do not exceed a threshold. Indeed, as the
standard decomposition is adopted, the coefficients are cut-off before reaching
their final values, thus introducing an approximation in the transform. This
approximation was not studied, neither theoretically nor experimentally, even
though the authors stressed that this approximation is in the spirit of the data
summarization. Another remarkable aspect of this work, deriving from work-
ing on raw data rather than cumulative values as well, consist in the range
query evaluation algorithm they propose, which is optimal, as only two paths
in the coefficients hierarchy (instead of 2d) have to be traversed. A variant of
the technique, working on cumulative values, was proposed by the authors in
[130] together with Lim and Padmanabhan, where they proposed to compute
the cumulative data on-the-fly for each slice of multi-dimensional array, just
before decomposing it by means of the wavelet transform.

A different approach in transforming multi-dimensional data, which is
based on the nonstandard Haar DWT, was introduced by Chakrabarti et
al. in [19, 20]. By means of the nonstandard Haar DWT, they proposed to
process, independently, each of the Nz non-null values and obtain 2d − 1 de-
tail coefficients, in their final values, and 1 average coefficient, which is defined
over a domain of size nd

2d and needs to be further transformed. The selection
of the m largest detail coefficients largest in magnitude can be safely accom-
plished on the fly (without approximation, as the choice is done according
to their final value), and the remaining O(min{nd

2d , Nz}) average coefficients
are recursively decomposed. Their algorithm can run in time O(Nz logNz),
which can decrease down to O(Nz) if data are organized in chunks. Despite
this important improvement, the main contribution of [19, 20] is the applica-
tion of the wavelet transform to a more general query approximation context.
In fact, the authors described how to efficiently compute selection, projec-
tion, join and general aggregation operators in the reduced wavelet domain.
Specifically, they proposed to compute equivalent operators in the wavelet
domain and then to anti-transform the result. This solution represents a sig-
nificant improvement in efficiency w.r.t. the other possibility, consisting in
anti-transforming before computing the operators, as the the wavelet domain



2.2 Discrete Wavelet Transform 39

consists of a compact set of data synopses, while the anti-transformed data
could be significantly larger.

Further work dealing with wavelets has mainly regarded the investigation
of effective strategy for the coefficient thresholding. The deterministic strategy
based on keeping only the m largest in magnitude coefficients, although guar-
antees the lower SSE on reconstructed single values, can yield highly biased
estimations on some regions of data, for which no coefficients could be kept,
in favor of other regions which could be approximated with high accuracy. In
order to avoid this problem, Garofalakis and Gibbons in [45, 46] introduced a
new probabilistic thresholding scheme based on the idea of randomly rounding
coefficients, so that the expected value of the rounded value coincides with the
original one. More specifically, the most important coefficients are determin-
istically retained, while the other are rounded either up to a larger rounding
value to be retained or down to zero. To this aim, each non-zero coefficient ci is
assigned a random value Ci such that Ci takes the value λi (and it is retained)
with probability yi = ci

λi
and takes the value zero (and it is discarded) with

probability 1−yi. Then, by flipping an independent yi-biased coin (i.e., a coin
with probability of success equal to yi and independent on the other flips),
the type of rounding for ci is chosen. It is easy to verify that Ci has expected
value E[Ci] = ci and variance V ar(Ci) = ci · (λi − ci). A coefficient ci can be
deterministically chosen to by retained by posing λi = ci. The authors showed
that this thresholding scheme yields unbiased estimation both for equality and
range queries. The values λi can be chosen in order to minimize different error
metrics. A quantization on coefficient is adopted (i.e., each λi can be a multiple
of a fixed value 1/q). The authors presented the dynamic-programming-based
algorithms for minimizing the expected mean-squared error and the maxi-
mum relative error. In addition, they proposed a thresholding scheme not
based on rounding but which aims at minimizing the maximum normalized
bias. The time complexity of proposed algorithms is O(Nzq

2m log(qm)), where
m is the number of the retained coefficients. By means of experiments they
showed that the new thresholding strategies, in particular those minimizing
the maximum relative error and the maximum normalized bias perform bet-
ter than the deterministic thresholding strategy on one-dimensional synthetic
and real-life data sets. Although the authors described how to extend the
framework to the multi-dimensional application setting, no experimental re-
sults testing the technique in that context have ever been presented. In [34], an
ε-approximate algorithm based on the same probabilistic thresholding strat-
egy was proposed, working in time O(Nz log q ·min{ log Nz log R

ε ,mq}), where
R is proportional to the maximum absolute value of wavelet coefficients. The
problems possibly arising from “bad” coin-flip sequences and from the quan-
tization in the coefficient thresholding scheme proposed in [45, 46] has been
overcome by Garofalakis and Kumar in [47, 48]. It these works they intro-
duced a deterministic wavelet thresholding scheme, implemented by means of
a dynamic-programming-based algorithm, which can minimize the maximum
relative/absolute error in the estimations. The complexity of the proposed



40 2 Data summarization: state-of-the-art techniques

algorithm is O(Nz
2) in the one-dimensional case. The extension to the d-

dimensional case becomes infeasible, as the complexity becomes O
(
Nz

2d
)
.

To reduce the complexity, they introduced an ε-approximate algorithm, with

complexity O(22d

ε ·Nz logNz).

2.3 Histograms

According to Beniger and Robyn [8], the word histogram was coined in in 1895
by Karl Pearson on the basis of the ancient Greek words ιστoς, which means
mast, and γραµµα, which means graphical symbol. By means of this word
Pearson intended to denote the class of graphical representations, commonly
adopted in statistics, based on the use of vertical lines of different height
for representing the values of some measure associated to different items.
However, the use of histograms precedes their nicknaming. In fact, the first
known use of histograms dates back to 1833, when the French statistician
André Michel Guerry adopted this form of graphical representation (obviously
without calling it histogram) for depicting crime data in his book Essai Sur
La Statistique Morale de la France. In 1846, the Belgian statistician Adolphe
Quetelet in his book Lettres sur la Théorie des Probabilités, Appliquée aux
Sciences Morales et Politiques adopted a symmetric histogram approximating
a normal distribution.

Fig. 2.6. Bar chart from Letters on our agricultural distresses by Playfair, 1822

A similar form of graphical representation are bar charts, which are based
on bars, instead of lines, having a width besides a height as the lines of his-



2.3 Histograms 41

tograms. However, the two forms of representation are strictly related, and
are often confused. The use of bar charts is anterior to the introduction of
histograms. In fact, in 1786 the Scottish political economist William Playfair
adopted bar charts for the first time in his book The Commercial and Political
Atlas, in which the commercial exchanges between Scotland and other coun-
tries were analyzed. A known practical and successful use of bar charts was
that by Florence Nightingale, a English nurse who organized the sanitary ser-
vices during the Crimea war and who founded the modern nursery assistance.
She adopted bar charts in 1859 to compare mortality in the peacetime army
to that of civilians, convincing the government to improve army hygiene.

Even though histograms are mainly considered a form of graphical repre-
sentation, they are based on tables representing some data distribution. The
idea of using this kind tables, without graphically representing them, was
firstly introduced by the English statistician John Graunt, generally consid-
ered to be the founder of the science of demography. In 1662 he published
the book Natural and Political OBSERVATIONS Mentioned in a following
INDEX, and made upon the Bills of Mortality in which the age and causes of
mortality in London during the bubonic plague years (from 1592 to 1636) were
analyzed. In this book, he presented several tables analyzing the number of
deaths grouped by several characteristics, such as the cause and the year. The
English government was interested in his studies, as they represented the basis
for the first statistically-based estimation of the population of London and of
England (thus, it was possible to have an idea about the possible incomes due
to taxes!).

Without recalling all their adoptions throughout the last three centuries, it
is just worth remarking that histograms, since their origins, have been widely
adopted to represent qualitatively data distributions.

Their adoption in databases was explicitly proposed for the first time in
1980 by Kooi, who in his PhD thesis [84] proposed to adopt histograms for
approximating attribute value frequency distributions for supporting the se-
lectivity estimation in query optimization. However, the idea of approximating
the attribute frequency distribution by means of tables had been already pro-
posed one year before by Merret and Otoo in [101]. Since the early 1980s,
several histogram-based data approximation techniques have been proposed.

In order to describe the main ones, some basic definitions will be given.

Definition 2.1 Given a one-dimensional data distribution D over the do-
main of values V , consisting of n entries represented by pairs 〈vi, fi〉, where
vi ∈ V and fi ∈ [0, 1] represents the frequency associated to vi, si = vi − vi+1

(0 < i < n) will be said spread of vi and ai = fi · si (0 < i < n) will be said
area of vi. The set of the frequencies {fi|0 < i ≤ n} will be denoted as F ,
the set of spreads {si|0 < i < n} will be denoted as S, and the set of areas
{ai|0 < i < n} will be denoted as A (spred and area are not defined for the
n-th value).



42 2 Data summarization: state-of-the-art techniques

The definitions of spreads and areas make sense only if a total ordering
among the values in V can be defined. In the one-dimensional case it is al-
ways possible defining a total ordering on V , which can be a natural ordering
depending on the semantics of values in V or an ordering induced by an enu-
meration. In the d-dimensional case, where vi is a d-tuples, a total ordering
could make no-sense. Therefore, in the following, vi will be assumed as simple
values, thus focusing the attention on one-dimensional data distributions. The
generalization to the multi-dimensional case will be proposed later.

V

F
< v , f >1 1

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

< v , f >6 6

s
4

4
a

V

F

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Bucket b1Bucket b1

Bucket b2Bucket b

(a) (b)

Fig. 2.7. Histogram build on a data distribution over ten values and summarization
of data distribution in two buckets

In Fig. 2.7 (a) an histogram built on a set V consisting of ten values is
depicted. In order to achieve data summarization, the set of pairs 〈vi, fi〉 is
partitioned into groups of pairs called buckets, and for each bucket a summa-
rizing information is stored. That is, an information summarizing both the
values and the frequencies associated to the pairs in the same bucket must be
stored. The most adopted strategies impose to partition the data distribution
so that if a bucket contains two entries 〈vi, fi〉 and 〈vi, fi〉 then it also contains
all the entries 〈vk, fk〉 with vi < vk < vj . Then, for each bucket the range of its
values (the minimum and the maximum value) and the sum of its frequencies
are stored. Therefore, each bucket bk can be considered as a pair 〈ρk, sumk〉,
where ρk = [lbk..ubk] is a range defined on the value domain V , with lower
bound lbk and upper bound ubk, and sumk =

∑ubk

i=lbk
fi.

2.3.1 Querying histograms

The estimation on the basis of the bucket information are usually made ac-
cording to two assumptions, the first on the values and the second on the
frequencies:



2.3 Histograms 43

1. Continuous value assumption (CVA): it is assumed that any possible value
between the minimum and the maximum values in the bucket are present
with non-null frequency in the bucket itself;

2. Uniform frequency distribution assumption (UFD): it is assumed that each
value in the bucket is associated the same frequency value.

Indeed, other strategies for estimating the value distribution have been
proposed in literature. Specifically, in [108] the point value assumption is in-
troduced, according to which only one value is present in the bucket (usually
the lowest among the values actually contained in the bucket). In [109], a new
assumption is introduced, namely the uniform spread assumption: values are
assumed to be equidistant inside the bucket. In order to exploit this assump-
tion, it is necessary to store the number of distinct values actually contained
inside each bucket. However, according to theoretical results, this assumption
does not lead to more accurate estimations than the CV A. In fact, Buccafurri
et al. in [12] proved that even though both the number c of distinct values
associated to non-null frequencies and the sum of frequencies s were known,
an unbiased estimator of range queries would not take into account c but only
s (instead, c affects the variance of the estimator).

In Fig. 2.7 (b) a partitioning of the data distribution in Fig. 2.7 (a) is
depicted. The original data distribution is summarized by two buckets, the
first one summarizing the first 4 pairs, and the second one summarizing the
last 6 pairs. In this case, the two buckets are b1 = 〈[v1..v4],

∑4
k=1 fi〉 (lb1 = v1,

lb1 = v4) and b1 = 〈[v5..v10],
∑10

k=5 fi〉 (lb2 = v5, lb1 = v10). According to the
UDF and the CVA assumptions, each frequency fi of vi ∈ ρk is approximated
by the same value f̃k = sumk

|ρk| , where |ρk| = ubk − lbk + 1 is the size of the
range ρk (corresponding to the estimated number of values in ρk according
to the CVA). When estimating a range query, i.e. the sum of frequencies
associated to values inside a range r, there are three possible cases as regards
the contribution of each bucket bk to the estimate:

1. ρk ∩ r = ∅: the bucket gives no contribution to the query;
2. ρk ∩r ≡ ρk: the bucket is completely contained inside the query, and gives

an exact contribution to the query;
3. ρk∩r ⊂ ρk: the contribution of the bucket must be estimated. To this end,

according to the CVA, the number of values in bk and r is estimated as
|ρk∩r|, each of these values is associated an estimate f̃k = sumk

|ρk| , therefore
the estimate contribution of bk is |ρk ∩ r| · sumk

|ρk| .

The three cases can be unified considering that |ρk∩r|
|ρk| = 0 when ρk ∩ r = ∅

and |ρk∩r|
|ρk| = 1 when ρk ∩ r ≡ ρk. The simple general algorithm for evaluating

range queries on a histogram, represented by set of buckets grouping contigu-
ous values and on the basis of the CV A and UFD assumptions is depicted
in Fig. 2.8. Observe that the errors affecting the estimations depend exclu-
sively on the buckets which partially overlap the query range, as they give an



44 2 Data summarization: state-of-the-art techniques

approximate contribution to the estimation, while the other gives an exact
contribution (0 case 1, sumk in case 2). In the one-dimensional case, at most
two buckets can gives an approximate contribution to the query estimate.

INPUT H:a histogram represented as a set of β pairs
〈ρi, sumi〉 (1 ≤ i ≤ β) approximating the a fre-
quency value distribution on a set V ;

r: a range defined on the same domain V ;

OUTPUT s: the estimate of the sum of frequencies associated
to values inside r;

begin
s = 0;
for (i ∈ {1..β}) do

s = s + |ρi ∩ r| · sumi
|ρi| ;

return s;
end;

Fig. 2.8. General algorithm for answering range queries on a histogram

The complexity of the algorithm is O(β), where β is the number of buckets,
as a linear scanning of the buckets is performed, and for each bucket a constant
number of operations is computed.

The accuracy of the estimates, of course, depends on the quality of the par-
tition of the data distribution on which the histogram is based. Denoting with
〈vi, f̃i〉 the estimated data distribution on the histogram, the sum of squared
errors SSE =

∑n
i=1(fi−f̃i)2 is a widely adopted metric for the errors affecting

estimates on the histogram. The aim of a histogram construction algorithm
is that of minimizing the measure of the errors within a given storage space
bound, i.e. a limited number β of buckets. In [74] Jagadish et al. have proposed
a dynamic-programming-based algorithm which can compute the V-Optimal
histogram, i.e. the histogram minimizing the SSE of estimates, in time O(β·n2)
in the case of one-dimensional data. Observe that, the SSE depends on the ab-
solute error of equality query estimates. In many context it would more useful
to minimize the relative error of estimates, instead of the absolute one. In [55]
Guha et al. proposed a dynamic-programming-based algorithm for constructin
a one-dimensional histogram which minimize the maximum relative error of
equality query estimates, running in time O(nβ log2 n). Observe that minimiz-
ing either the SSE of a histogram of the maximum relative error on equality
queries, does not give non-trivial guarantees on errors affecting range queries
estimates. In [50] Gilbert et al. proposed a pseudo-polynomial algorithm for
minimizing the sum of squared errors on range queries for one-dimensional



2.3 Histograms 45

data. Specifically, they defined the SSE for range queries as

SSE′ =
∑
a≤b

(sum([a..b]) − s̃um([a..b]))2 ,

where [a..b] are all the possible ranges on which queries can be defined, and
s̃um([a..b]) is the estimation of sum([a..b]) on the histogram. The complexity
of the proposed algorithm is O (

n4β(sum([1..n]))3
)
.

2.3.2 A Histogram Taxonomy

In [109] a taxonomy of histograms was proposed by Poosala et al. They studied
all the histogram aspects, enumerating the properties characterizing a wide
class of histogram construction techniques. Their taxonomy included all the
previously proposed histogram types and some others that they showed to rep-
resent a significant improvement w.r.t. the first ones. The following histogram
properties were isolated in order to define the taxonomy:

• Sort Parameter : it is a parameter assigned to each entry 〈vi, fi〉 of the
data distribution according to some function of vi and fi. Value (V ), fre-
quency (F ) and area (A) were indicated as the most significant possible
sort parameters;

• Source Parameter : it is the parameter which represents the most critical
aspect of the data distribution in the estimation problem. Spread (S),
frequency (F) and area (A) were indicated as source parameters of interest;

• Partition Class: this parameter specifies possible restrictions on the bucket
composition. For instance, serial histograms [70] require that entries of
the data distribution in the same bucket, ordered according to the sort
parameter, are contiguous and end-biased histograms [70, 72] require that
all but one buckets are singleton, i.e. they contain one only entry of the
data distribution;

• Partition Constraint : this parameter represents a mathematical constraint
on the source parameter and uniquely identify a histogram within the class
of histograms defined by sort and source parameters and partition class.
For instance, equi-sum partitioning constraint impose that the sums of
source parameter in all buckets is the same.

The most adopted sort parameter, since the first proposals [84, 101], has
been the value (V ). The source parameter adopted by both [84] and [101] was
the spread (S), but later, more effective techniques have focused the atten-
tion on the frequency (F ) as source parameter. As regards the partition class,
the majority of techniques falls in the class of serial histograms. The param-
eter on which the histogram-based techniques mostly differ is the partition
constraints. Besides the equi-sum one, other proposed partition constraints
have been V-Optimal [72], which requires to minimize the variance of sub-
set of data distribution inside buckets, Spline-Based [109], which requires to



46 2 Data summarization: state-of-the-art techniques

minimize the maximum absolute difference between a source parameter value
and the average of source parameter values in buckets, Max-Diff [109], which
define β buckets by separating the entries of the data distribution, ordered
according the sort parameter, in correspondence of the β − 1 pairs with the
β − 1 larger absolute difference in the source parameter, and Compressed
[109], which stores separately the k entries of the data distribution and the
remaining ones are partitioned according to an equi-sum histogram.

The reason why the majority of techniques adopt value as sort parameter
jointly with serial partition class resides in the estimation efficiency. In fact,
range queries are posed specifying a range on the value domain V . Therefore,
if a bucket did not contain values which are contiguous in their domain and
no implicit information were available on the set of values contained in each
bucket, in order to make feasible the range query estimations, the list of all
the values inside each bucket should be stored (a summary information of
non-contiguous values, such as their average, would be insignificant). There-
fore, summarization would regard only the frequencies, and the size of the
histogram would be O(n), which is the same order of magnitude of the origi-
nal data distribution size. Moreover, computing an estimation would require
to access all the n values partitioned among the β buckets, in order to verify
whether each of them is contained inside the query range. Thus, the estima-
tion complexity would coincide with that of computing the exact answer to
the query on the original data distribution.

2.3.3 Multi-dimensional Histograms

In the case of multi-dimensional data, only histograms with value as sort pa-
rameters have been studied. In this case, values are d-tuples corresponding
to points of the d-dimensional data domain. Each point is associated a value
fi. The classical histogram-based multi-dimensional data summarization tech-
niques define a partition of the data domain, consisting of hyper-rectangular
blocks, and for each block its boundaries and the sum of frequencies associ-
ated to the points inside the blocks are stored. That is, the buckets can be
represented as in the one-dimensional case by means of pairs 〈bi, sum(bi)〉,
where bi are non-overlapping multi-dimensional blocks.

In Fig.2.9 a two-dimensional data distribution (a), represented as a two-
dimensional array, and a possible histogram approximating it (b) are depicted.
The basic algorithm for querying multi-dimensional histograms is the same as
that for one-dimensional histograms.

In Fig.2.10 the evaluation of a query on the data distribution of Fig. 2.9
is represented. Observe that, unlike the one-dimensional case, where at most
two-buckets can give an approximate contribution to a range query, in the
multi-dimensional case it is not possible to give a non-trivial bound on the
buckets partially overlapping the query, and thus yielding and approximation
in the query estimate. From this consideration, it emerges that the problem of
effectively approximating a data distribution, possibly giving error guarantees



2.3 Histograms 47

1 4 2 1 16

3 4 1 6 3 3

2 5 5 6 95

1 3 7 71 3 3

1 4 2 1 16 5

8 3 2 5 66

8 4 2 6 16 6

8 2 2 1 56 9

1 4 7 2 5 16 1

8 3 2 1 66

16

49

18 57

15

24

13

49

20

(a) (b)

Fig. 2.9. A two-dimensional data distribution (a) and a histogram approximating
it (b)

1 4 2 1 16

3 4 1 6 3 3

2 5 5 6 95

1 3 7 71 3 3

1 4 2 1 16 5

8 3 2 5 66

8 4 2 6 16 6

8 2 2 1 56 9

1 4 7 2 5 16 1

8 3 2 1 66

Query range

Actual query result Q=78

16
49

��18 57

15

24

13 49 20

�5

�29,4

�14,7

Q= 49 + 1� � �49 + 15 = 67,18 +
� 6

10

6

20

2

6

Estimated query result Q=67,1
~

(a) (b)

Fig. 2.10. Range query on a two dimensional data distribution (a) and its estimation
on a histogram (b)

on the quality of estimation, is much harder in the multi-dimensional case than
in the one-dimensional one.

As regards the partitioning of data domain, in the multi-dimensional case
three classes of partitions can be defined:

• Arbitrary partition: no restriction on the arrangement of buckets is im-
posed (Fig 2.11 a);



48 2 Data summarization: state-of-the-art techniques

(a) (b) (c)

Fig. 2.11. Examples of abitrary (a), hierarchical (b) and grid-based (c) partitions
of a two-dimensional data domain into 9 buckets

• Hierarchical partition: the partition can be obtained by recursively split-
ting a block, starting from the block representing the whole domain, along
one dimension into two sub-blocks (Fig 2.11 b);

• Grid-based partition: buckets are represented by the cells of a grid defined
on the data domain(Fig 2.11 c).

The arbitrary class is a super-class of the hierarchical one, which in turn
is a super-class of the grid-based one.

The construction of an arbitrary partition in the multi-dimensional case
minimizing an error metric such as the SSE has been proved in [104], by
Muthukrishnan et al., to be an NP-hard problem. Therefore, all the ap-
proaches proposed in literature, dealing with more than one dimensions, were
restricted to studying the hierarchical and grid-based sub-classes of partitions.

2.3.4 Histogram-based summarization techniques

The first histogram based summarization techniques, [84] and [101], proposed
to partition the attribute value domain in equi-width ranges, storing the sum
of entry frequencies in each range. Therefore, these proposals adopted value
as sort parameter, spread as source parameter, serial partition class (contigu-
ous values are summarized in the same bucket) and equi-sum as partition
constraint (the sum of the entry spreads in each bucket, corresponding to the
width of the bucket, must be the same). In particular, in [101], Merret and
Otoo proposed to summarize a multi-dimensional data distribution by means
of tables obtained partitioning the data domain according to a grid, whose
cells have equal width along each dimension. Equi-width histogram repre-
sented a dramatic improvement over the uniform distribution assumption for
the overall value set, which had been mainly adopted until the end of 1970s.
Thus, histograms were quickly adopted by the Ingres DBMS [85, 121] in its
commercial version, and later by other DBMSs as well.

In 1981 Christodoulakis, in his PhD thesis [27], suggested to adopt
variable-width tables based on the maximal difference criterion, aiming at



2.3 Histograms 49

summarizing together contiguous values with similar associated frequency.
According to this criterion, the difference between the maximum and the
minimum frequency in the same bucket must be within a given threshold.
This criterion minimizes the estimation error on certain values rather than
the average error on all values, and it seems most appropriate when queries
are not uniformly spread over all attribute values.

Another milestone in the history of histogram-based summarization tech-
niques is represented by the PhD thesis of Piatetsky-Shapiro [107], wherein
he proposed the FASTSCAN system for query optimization. The system in-
troduced a new class of histograms, based on the equi-height criterion (known
also as equi-depth), which he showed to outperform the classical equi-width
histograms. In [108], a work in joint with Connell, the technique is described
with theoretical analysis of the estimation error in the worst and average cases.
The authors stressed that the error can be arbitrarily reduced by increas-
ing the number of buckets (indeed, this is rather expected). The equi-height
histogram, according to the previously described taxonomy, adopts value as
sort parameter, frequency as source parameter, belongs to the serial parti-
tion class and adopts equi-sum as partition constraints (i.e., the sum of the
source parameter, the frequency, of entries inside each bucket must be the
same). Although the equi-heigth partitioning strategy is possibly superior to
the equi-width, in terms of estimation accuracy, the construction of an equi-
heigth histogram is more expensive. In fact, before choosing the boundaries of
β buckets, β−1 quantiles of the data distribution must be computed, and this
operation could require multiple scans of data. To achieve a reduction in com-
plexity, the authors described how to efficiently construct the histogram on
the basis of a sample of the data distribution. Theoretical bounds on the dif-
ference between the “approximate” equi-height histogram obtained by means
of a random sample of data and the exact equi-height histogram (i.e., the his-
togram built on the actual data distribution and containing the same sum of
frequencies in all buckets) were provided by Chaudhuri et. al. in [23]. Besides
the sampling, several works related to the efficient computation of quantiles
could be exploited as support to the equi-height histogram construction. For
instance, in 1985, Jain and Chlamtac proposed the P2 algorithm [76], which
efficiently (i.e., by means of a single scan of data and with constant auxil-
iary space) computes approximate quantiles. In [112] Raatikained proposed
a generalization of the P 2 algorithm which enables the simultaneous efficient
estimation of several quantiles. More recently, algorithms for efficiently com-
puting approximate quantiles with approximation bounds were proposed by
Alsabti et. al. [5] and Manku et al. [97].

In [79] Kamel and King proposed a technique for partitioning multi-
dimensional data by means of texture analysis. They did not talk explicitly of
histograms, but their technique can be actually considered a histogram-based
one. To partition the data space into cells, their techniques aims at obtaining
hyper-rectangles containing homogeneous data distribution, because, as the
authors stressed, they can be summarized easily without producing large es-



50 2 Data summarization: state-of-the-art techniques

timation errors. To this end, the data domain is first partitioned into cells by
means of a grid. Then, for each d-dimensional cell its homogeneity is evalu-
ated as

∑d
i=1

∑ni

j=1(margi[j] − µi)2, where margi[j] it the j-th value of the
marginal distribution (see Section 1.5) on the i-th dimension of the cell, ni is
the number of values that the cell spans along the i-th dimension, and µi is
the average of margi values. Adjacent cells with similar evaluated homogene-
ity are subsequently merged together. According to the authors, buckets with
similar function values have also similar texture. The merging of adjacent cells
suggests a form of agglomerative clustering which takes into account either
the proximity and pattern similarity of data. This has been the first approach
proposing to partition a multi-dimensional data distributions according to a
bottom-up strategy.

The first work talking explicitly of multi-dimensional histogram is [103], by
Muralikrishna and DeWitt, who in 1988 proposed and extension of the equi-
depth histogram, introduced in [107, 108], to the multi-dimensional case. Their
proposal in constructing a d-dimensional histogram entails the construction
of several one-dimensional equi-height histograms along each dimension sepa-
rately. Specifically, at the first step, a number of bucket is created by defining
a one-dimensional equi-height histogram w.r.t. the first dimension. To this
end, the marginal distribution w.r.t. the first dimension can be considered.
At the following steps, for each bucket previously defined, tuples inside it are
further partitioned according to an equi-height histogram w.r.t. the second
dimension, and so on.

In [69] Ioannidis and Christodoulakis studied the errors yielded by uni-
form frequency assumption on the estimation of size of the result of multi-
join queries. They proved an exponential growth of the error with the query
dimension (i.e., number of joins) in the worst case. The results referred to a
restricted class of queries, namely multi-join queries with only one attribute
participating in joins per relation. Even though this was not a work strictly
related to histogram construction techniques, it was the starting point for an
important series of innovative works related to histograms. In fact, a very
important aspect of this work have been the study of the error obtained by
storing exactly the highest frequencies and using the uniform frequency as-
sumption for all the rest of frequencies, which was shown to dramatically re-
duce the errors in estimations. The work [69] posed his bases on some studies
regarding the related problem of block access estimation by Christodoulakis
[29, 31] (see Section1.1).

The ideas proposed in [69] were the preamble to the work of 1993 [70],
where Ioannidis and Christodoulakis introduced the serial and biased (low-,
high- and end-biased) classes of histograms, proving that for single- and multi-
join queries over a single attribute, the optimal histogram has the frequency
as sort parameter. For the first time, in the context of selectivity estimation, it
was proposed construct an histogram by adopting frequency instead of value
as sort parameter, that is it was proposed to group entries with contiguous
frequencies in the same bucket, instead of contiguous values. Indeed, a similar



2.3 Histograms 51

idea had been already introduced in [124] by Vander Zanden et al., in [98], in
the context of the block access estimation problem (see Section 1.1).

A generalization of [69] to multi-join queries over multiple attributes was
provided in [71], where Ioannidis proved that serial histograms with the fre-
quency as sort parameter are always optimal in the case of maximum size
of the join result and in the case of minimum size when the attribute value
independence assumption holds. In addition, the author pointed out that the
expected value of join sizes, considering every possible frequency distribution,
coincides with the estimation yielded by any histogram. Therefore, it is only
meaningful to compare various techniques in extreme cases, as in the average
cases all the histograms behave identically. Despite the theoretical importance
of the work, in practice serial histograms on sort parameters different from
values are inefficient to be queried, as remarked in Section 2.3.2.

In [72], together with Poosala, Ioannidis introduced more practically feasi-
ble ideas than those proposed in [70] and [71]. They introduced the V-Optimal
histogram for the first time, showing that minimizing the variance of abso-
lute error on the estimation of the frequency of single values is equivalent
to minimize the error on a self-join. Therefore, the V-Optimal coincides with
a serial histogram with frequencies as sort parameter. However, the authors
themselves pointed out that the serial histogram with frequency as sort pa-
rameter is not feasible in practice, both for computational and spatial effi-
ciency. Therefore, the authors recommended to adopt end-biased histograms,
which are a particular case, efficiently manageable, of serial histograms. In
end-biased histograms, the data distribution entries with the highest and the
lowest frequencies are stored each in a singleton bucket, while the other entries
are all stored in a single bucket.

In 1997, after about ten years of research inactivity in the study of multi-
dimensional histograms, one of most known multi-dimensional data summa-
rization technique, namely MHIST-p, was introduced in [111] by Poosala and
Ioannidis. The MHIST-p histogram is built by a multi-step algorithm which,
at each step, chooses the bucket which is evaluated as the most in need of
partitioning, and partitions it into p new sub-buckets along one of its dimen-
sions. The bucket to be partitioned is selected and partitioned on the basis
of its marginal distributions. Several partition constraint can be adopted by
MHIST-p to select and split the bucket which is the most in need of partition-
ing. Authors found that V-Optimal and Max-Diff are the most effective ones
when value is adopted as sort parameter and area as source parameter with the
serial partition class (all these parameters refer to the marginal distributions,
and not to the joint frequency distribution). Therefore, they chose Max-Diff as
it is more efficient to be computed. Thus, according to Max-Diff, after com-
puting the marginal distributions (see Section 1.5) marg1(b), . . . ,margd(b)
for each block, the block b to be split is the one which is characterized by
a marginal distribution (along any dimension i) which contains two adjacent
values with the largest difference w.r.t. every other pair of adjacent values
in any other marginal distribution of any other block. Then, b is split along



52 2 Data summarization: state-of-the-art techniques

the dimension i into p new buckets. The authors found that p = 2 provides
the best results. Therefore, when not differently specified, MHIST refers to
MHIST-2 adopting the Max-Diff partition constraints on marginal distribu-
tions. In MHIST for each bucket its MBR is stored (i.e., the smallest range
containing all the entries in the bucket).

In [3], Acharya et al. introduced Min-Skew, a technique proposed in the
context of selectivity estimation in two-dimensional spatial data sets. Indeed,
this technique is suitable for approximating general multi-dimensional data
distribution and can be viewed as a refinement of MHIST. Basically, Min-
Skew first partitions the data domain according to a grid, and then builds a
histogram as though each cell of the grid represented a single point of the data
source. The histogram is built using the same hierarchical scheme adopted by
MHIST-2, using a different criterion for choosing the bucket to be split at
each step: it tries all possible splits along every dimension of every block, and
evaluates how much the SSE of the marginal distribution along the splitting
dimension is reduced by the split. Then, the block b and the splitting position
〈dim, pos〉 are chosen if the reduction of SSE(margdim(b)) obtained by split-
ting b along dim at position pos is maximum w.r.t. the reduction of any other
SSE(margi(b′)) (where i ∈ [1..d]) which could be obtained by performing
some split along i. Also in Min-Skew, like in MHIST, buckets boundaries are
represented by means of their MBRs.

In [44] Furtado and Madeira proposed a technique, called Summary Grids
(SGRID), which for the first time since the work [79] suggested again an
opposite approach to this based on iteratively partitioning the data domain
in a top-down fashion. In fact, they proposed to build buckets by aggregating
data in a bottom-up fashion which aims at coalescing neighbor homogeneous
data. Starting from a point, a bucket is enlarged towards one of a set of possible
directions until a measure of the bucket homogeneity exceeds a threshold.
Outliers are summarized apart, in order to not affect bucket homogeneity.
Even though this technique aims at avoiding local homogeneous regions to
be prematurely split, as it could happen in MHIST or Min-Skew, its greedy
strategy could enable the creation of small homogeneous buckets which could
later prevent the creation of larger homogeneous buckets (under the hypothesis
that buckets can not overlap).

2.3.5 Non-classical Histograms

Histogram-based summarization techniques described so far base their strat-
egy on the partitioning of the overall data domain into non-overlapping hyper-
rectangular blocks, built by an initial elaboration on the whole data distribu-
tion, usually by means of an iterative top-down partitioning strategy. However,
some different approaches have been proposed in the last few years, differing
from the classical histogram-based techniques for different aspects. Specifi-
cally, some techniques exploit mathematical transforms in order to enhance
the histogram construction, some techniques use an approach driven by the



2.3 Histograms 53

query workload in histogram construction, some techniques allow buckets to
overlap and other techniques aim at improving the intra-bucket estimation
accuracy by adopting a more complex representation of data inside buckets
than the a simple summary information which is adopted in estimating query
answers on the basis of the uniform distribution assumption. Some of these
techniques will be briefly described in the following.

In 1936, Eckart and Young, proposed a method for approximating a matrix
with another one of lower rank [37]. Their idea, based on the exploitation of
the Singular Value Decomposition (SVD) of a matrix, was similarly proposed
to approximate two-dimensional data distributions in [111] by Poosala and
Ioannidis. The SVD of a real matrix D of size m × n is any factorization of
the form

D = U × Σ × V, (2.6)

where U in an m × n orthogonal matrix, Σ is a n × n diagonal matrix with
non-negative values, and V is an n× n orthogonal matrix. The values on the
diagonal of Σ are said singular values of D, and will be denoted as σi (i.e., σi

is the value of D at the row i and column i). Denoting by U i the i-th column
of U and by Vi the i-th row of V, Equation 2.6 can written as

D =
n∑

i=1

σi · U i × Vi. (2.7)

In order to achieve data summarization, the smallest singular values are
approximated by zero, thus, there is no need to store the columns of U and
the rows V which gives a null additive contribution to D according to Equa-
tion 2.7. The other vectors, i.e. those corresponding to the k largest singular
values, are approximated by means of k distinct one-dimensional histograms.
The estimation can be performed on stored histogram adopting Equation 2.7.
However, for an equality query all the k one-dimensional histograms must be
adopted. Therefore, the estimation can be inefficient, especially considering
that for a range query several point values must be estimated, unless the sin-
gular value decomposition is applied to the cumulative distribution instead
of the original one. This technique represents an effort in reducing the de-
pendency between attributes, but it is limited to the two-dimensional case.
It could be interesting trying to define more sophisticate thresholding strate-
gies for choosing which singular values and related vectors retain in order
the optimize some objective function, as it was made in [45, 46, 47, 48] for
wavelet-based summarization techniques.

A technique which works on general multi-dimensional distribution and
aims at reducing correlation among dimension was proposed by Deshpande
et al. in [35]. The idea inspiring their work is that the full correlation among
the attributes of a relation is unlikely to hold as well as their full indepen-
dence. Thus, they proposed to reduce the data dimensionality by means of
statistical interaction models. In particular, they adopted the decomposable



54 2 Data summarization: state-of-the-art techniques

models, a subset of log-linear models which have the advantage to enable
query estimation by means of a closed formula. The decomposed model is a set
M = {S1, . . . , Sk} where Si is a subset of the relation attributes {X1, . . . , Xd}
(the subset are not required to be disjoint), which can be represented by a
graph having a node for each attribute Xi and an edge between each pair of
nodes corresponding to a pair of attributes inside the same Si. This graph
must be chordal, that is any cycle of length greater to three has a shortcut
between any two non-adjacent nodes. The model is built so that the attributes
within the same subset Si can be strongly correlated, but groups of attributes
belonging to different subsets are weakly correlated. The data distribution is
then projected along the attributes of each subset separately, thus obtaining
k data distributions with reduced dimensionality w.r.t. the original data dis-
tribution. Each new low-dimensional data distribution is then summarized by
means of MHIST. As MHIST is known to yield poor accuracy over three di-
mensions, the authors imposed that each subset of attributes Si has cardinality
bounded by 3. Thus, at most 3-dimensional data distribution are summarized.
In order to choose a good model (i.e., a good decomposition of the attributes),
they proposed a novel algorithm which starting form the empty model (cor-
responding to the full independence assumption) progressively introduce the
edge in the graph representing the model which mostly improve a measure
of the model quality, under the constraint that the new model must continue
being decomposable. In order to partition the total storage space among the k
histograms, two algorithms were proposed: one optimal, which is based on dy-
namic programming and one sub-optimal which performs progressively splits
choosing at each step the histogram which mostly decrease a measure of the
overall error of the k histograms.

In [1] Aboulnaga and Chaudhuri proposed a technique, called ST-histogram
(self-tuning histogram), for building histograms based on different approach
w.r.t. respect all the previously proposed histogram-based techniques. In fact,
instead of creating the histogram by examining the whole data distribution,
they proposed to start with any initial, possibly rough, histogram, and then
to refine it by means of query feedbacks, which can be obtained at no extra
cost. Thus, the histogram is built incrementally, with little overhead at each
query execution, but completely avoiding the initial cost due to data scanning.
Furthermore, this technique is particularly suitable for approximating evolv-
ing data distributions, as the updates on data are incrementally propagated
to the histogram, without requiring the possibly time consuming operation of
building a new histogram from scratch. If some previously built histograms are
available, they can be exploited to define the initial ST-histogram. Otherwise,
the initial buckets of the ST-histogram can be defined, without looking at
data, as the cells of a grid partitioning the data domain, each one containing
an equal number of tuples, under the uniform distribution assumption over
the whole data domain. When a query is performed, the actual answer value
is adopted as feedback to update the histogram. Specifically, the absolute er-
ror in the estimation is computed, and each bucket involved in the query is



2.3 Histograms 55

tuned by summing a signed error proportional to the bucket contribution in
the estimate, adjusted by a dumping factor to avoid oversensitive histograms.
While the bucket overall frequencies are tuned at each query, bucket bound-
aries are tuned only periodically, as this operation can be more expensive. The
bucket boundaries restructuring entails moving some grid splits from regions
with low frequency to region with higher frequency. To this aim, marginal
distributions are examined: on each marginal distribution adjacent cells with
similar frequency are merged, and cells with higher frequency are split. The
split updates on each dimension are propagated to the multi-dimensional cells
accordingly. These kind of histograms, built without an initial knowledge of
the overall data distribution are unlike to provide the same accuracy as the
traditional approaches. The authors, in fact, by means of experiments showed
that ST-histograms are comparable in accuracy to those provided by MHIST
only on data without high skews.

In [56, 57] GENHIST (Generalized Histogram), a technique for approxi-
mating multi-dimensional data distributions over real domains, was proposed
by Gunopulos et al. Of course, the technique can be adopted to summarize
even data distribution defined over discrete domains. The main difference
w.r.t. classical histograms is that buckets yielded by GENHIST can overlap
and they are obtained by means of a bottom-up strategy. The idea under-
lying GENHIST is to progressively locate regions of data which exhibit a
non-homogeneous distribution w.r.t. contiguous ones. At each step, GEN-
HIST algorithm constructs a grid based on a ξ-regular partitioning of the
multi-dimensional data distribution and chooses a number of cells of the grid
having the largest density. The data distribution is made smoother by ran-
domly removing from each selected cell a number of tuples, so that the density
of remaining tuples in the cell is the same as the average density of the neigh-
bor cells. Removed tuples are stored in a bucket, whose boundaries coincide
with those of the corresponding cell. The value of ξ defining the grid depends
on the step of the algorithm. At the first step, an input parameter is used,
and at the following steps its value is iteratively decreased, thus making the
regular partitioning of data coarser: at each step the grid divides the data do-
main into about half as many cells as the previous step. This follows from the
observation that the data distribution processed at each step of the algorithm
is more homogeneous than that processed at previous steps, as high density
peaks have been removed, thus larger buckets suffice to approximate data in
detail. As in classical histograms, on a GENHIST histograms range queries
are evaluated on the basis of the CV A and UFD assumptions. Indeed, as
buckets are “layers” of data, in the regions where two or more buckets over-
lap, the approximate data density is assumed to be the sum of the average
data density associated to all the overlapping buckets. Thus, the density of a
region, as described by the histogram, can be obtained by summing different
combinations of the stored densities. This feature is actually the advantage
of the possible bucket overlapping. In fact, the number of regions described



56 2 Data summarization: state-of-the-art techniques

by different densities in the histogram can result much larger than the num-
ber of buckets. GENHIST has been proved, by means of experiments, to
be definitely superior in accuracy provided in estimating range queries w.r.t.
the other histogram-based summarization techniques, especially in the high-
dimensional settings. GENHIST has been generally considered the technique
for summarizing multi-dimensional data representing the state-of-the art so
far.

Another technique which builds the histogram without looking at data but
by means of query result feedbacks, as ST-histogram, is STHoles, proposed in
[11] by Bruno et al. Besides the query-driven incremental construction of the
histogram, STHoles differs from classical histograms also in the possibility to
construct overlapping buckets. Specifically, there is the possibility than one
bucket is a hole of another one. In a STHoles histogram buckets are organized
according to a tree structure. Each bucket b is represented by its MBR, but
its actual region is not necessarily rectangular, as it may contain rectangu-
lar holes. Each of these rectangular holes is the bounding box of some other
bucket, nested in b and considered as a child of b. The frequency value as-
sociated to each bucket takes into account only the data distribution entries
contained in the actual bucket region, that is the region covered by the bucket
MBR excluding the regions covered by its holes. An STHoles histogram can
be initialized assuming that it coincides with a singleton bucket, correspond-
ing to the whole data domain. When a range query is issued on the database,
each bucket b in the current histogram overlapping the query range r is eli-
gible to be updated. To this aim, by inspecting the result of the query, it is
possible to compute the exact number of tuples in the intersection between
r and each bucket MBR (of course, the query is assumed to return all the
tuples in r, not only the result of an aggregate operator on these tuples). If
the density of tuples in the intersection between a bucket b and the query
range r is very different (larger or smaller) than the overall density of b, the
intersection is transformed into a new bucket, which becomes a hole of b, and
the number of tuples in the new bucket are subtracted by the summary in-
formation about the number of tuples in b. The region corresponding to the
intersection might not be a rectangular region, as some holes of b could be
also intersected by r. In this case, the new bucket will not coincide with the
intersection, but with a shrunk region of it, which enables the new bucket
region not to overlap holes of b. Adding new buckets may require to remove
some others, in order to not exceed the storage space bound. To this aim, a
merge of two buckets is performed. Specifically, either a pair of parent-child
or a pair of siblings buckets can be merged into one only bucket. The pair
which minimize a measure of loss in accuracy is chosen. By means of exper-
iments, STHoles is shown to provide accuracy similar to GENHIST up to 4
dimensions. However, this technique has the intrinsic limit to be bounded to
the query workload, and queries posed onto not-yet-explored regions of data
are likely to provide unacceptable errors in estimations. On the other hand,



2.3 Histograms 57

STHoles, and ST-Histogram as well, are a natural and effective solution to the
approximation of evolving data sets, where the construction from scratch of a
more accurate histogram on static data, as GENHIST, would result infeasible.

In [87] Lee et al. proposed to adopt the Discrete Cosine Transform (DCT)
to enhance the histogram performances. Their work stems from the consider-
ation that in order to effectively approximate a multi-dimensional data dis-
tribution, a large number of small buckets it is often required. Therefore, the
propose to partition data domain by means of a fine-grain grid, thus obtaining
a large number of small buckets which accurately enough represent the data
distribution. Then, in order to reduce the number of buckets, the DCT is ap-
plied, and the less relevant coefficients are cut to zero. According the authors,
the technique should be effective as long as the data are strongly correlated,
as only in this case the DCT gives benefits in compacting the information
into the low-frequency coefficients. An efficient incremental maintenance of
the histogram is also proposed, which is based on the linearity of the DCT:
when new data are inserted, their DCT is computed and then added to the
previous one representing the histogram. Deletions of data can be viewed as
insertions of negative data, and this case is treated as the insertion one.

In [83] König and Weikum proposed to improve the intra-bucket esti-
mations by adopting a linear function curve fitting model to approximate
data inside buckets instead of a flat value. Their technique, tailored for one-
dimensional data distribution, first partition the data domain into buckets of
possibly different size. They proposed two algorithms to this aim: one optimal
and one more efficient based on a greedy strategy. After bucket boundaries are
defined, the underlying data distribution is locally approximated by means of
a linear function. Therefore, two values per bucket must be stored, instead of
only one. They also proposed how to maintain the histogram up-to-date w.r.t.
the data changes. Specifically, the query answer adopted as feedback, on the
basis of a weight assigned to each possible kind of query, in order to update
the coefficient representing the data distribution inside the buckets involved
in the query.

In [13, 14] Buccafurri et al. proposed to improve the intra bucket estima-
tion, in the case of one-dimensional data distributions, by associating to each
bucket a bit string which instead of representing a flat value (i.e., the sum
of values inside the bucket) represents an approximation of the total value
distribution across the bucket domain. This is achieved by means of several
proposed kinds of indices, which approximately describes in a hierarchical
fashion the actual data distribution inside each bucket. The index minimizing
a sample of queries is selected for each bucket. The idea was extended to the
two-dimensional case in [15], where quad-trees were proposed to partition the
data domain, starting from the overall data domain and step by step par-
titioning the bucket with the largest SSE into four new buckets. Then, the
data distribution of each bucket is described by one of a set of indices which
best approximates the local data distribution. Of course, on the one hand



58 2 Data summarization: state-of-the-art techniques

a more detailed description of the local data distribution enables providing
lower error rates in query estimation, but on the other it is more expensive to
be represented, thus a smaller number of buckets can be constructed within
the same storage space bound. However, the proposed representation is very
compact and it is shown that adopting a smaller number of buckets is often
preferable if each bucket local distribution is approximated in more detail.

In [9] Blohsfeld et al. investigated the adoption of kernel estimators in
representing the intra-bucket histogram distribution, finding that it yields
lower errors than classical histograms. However, their approach is focused on
one-dimensional continuous data distributions, and it can not be trivially gen-
eralized to discrete multi-dimensional data distributions as it is based on the
study of the derivatives of data distribution. Their approach, indeed, was gen-
eralized by Gunopulos et al. in [56, 57] to the multi-dimensional continuous
distribution, finding that their novel technique, namely GENHIST, outper-
forms kernel estimators.

2.4 Sampling

The adoption of sampling to infer statistical properties of large populations,
when it is not possible to take a complete census, is common in many fields.
Sampling-based estimations are supported by the wide statical theory related
to statistical hypotheses testing. Sampling was obviously exploited also in
computer science, as also digital data can be considered a “population” settled
in the world represented by their domain. The main issue in adopting sampling
is the need to draw a sample which is representative of the whole population,
otherwise estimations on it would result biased. For instance, if a zoologist
wanted to perform a statistical study on birds, results obtained on a sample
made up of only penguins would be accepted for publication in a serious
journal with low probability.

One of the main characteristic which differentiate sampling techniques is
the possibility to select a member either only once or more times. In the former
case sampling is said with replacement, in the latter without replacement. Sam-
pling with replacement is much simpler than sampling without replacement,
as each member can be selected independently on the others.

According to the strategy adopted to draw a sample from a population,
sampling techniques are classified as either as probability or nonprobability. In
probability sampling each member of the population has a known probability
of being included in the sample, whereas in nonprobability sampling members
are chosen in some non-random manner. Both the techniques can achieve
the task to draw a representative sample from the population, but only when
dealing with the former one probability and statistical theory can be exploited.
Probability sampling techniques are the following:

• Random sampling : is the purest form of sampling. Each member of the
population as the same probability of being included in the sample. This



2.4 Sampling 59

kind of sampling was used since ancient times: it had always been common
to cast lots3 for fairly choosing a group of people to be assigned some task
or something (of course, it assumed that lots are unbiased!);

• Systematic sampling : scanning the population, every n-th member is added
to the sample (e.g., if n = 5 the 5th member, the 10th, the 15th, and so
on, are selected). This technique yield an unbiased sample only if the order
adopted to scan the population is random, i.e. there are no hidden patterns
in it;

• Stratified sampling : a stratum is a subset of the population sharing a com-
mon property (e.g., sex or age when dealing with animals). The technique
first identify the relevant stratums and population is partitioned accord-
ing to them. Then, for each stratum, a number of members is selected by
random sampling.

As regards nonprobability sampling techniques, the most common ones
are the following:

• Convenience sampling : the members which are more convenient to choose
(according to some cost function) are included in the sample;

• Judgement sampling : the members that are judged (by some “expert
agent”) to be the most representative of the population are included in
the sample;

• Quota sampling : like in stratified sampling, stratums are first identified
and then members of each stratum are chosen according to convenience of
judgement sampling;

• Snowball sampling : members are progressively added to the sample on
the basis of those previously added. Thus, the sample grows like a rolling
snowball.

Of course, nonprobability techniques are not guaranteed to yield unbiased
samples. For instance, snowball sampling is intrinsically biased, and nothing
assure that the most convenient member to be chosen or those judged the best
are really unbiasedly representative of the population. On the other hand,
nonprobability techniques are less expensive to be applied than probability
ones, as selecting actual random samples could be difficult. For example, if
a population is very large, some members could be difficult to be reached,
but nevertheless it is necessary to consider them in order to have an unbiased
sample. Therefore, it is important to develop efficient techniques for generating
random sampling.

In the case of sampling with replacement from a population of Nz mem-
bers, drawing a random sample of size β can be simply achieved by selecting
β random integers and selecting for each selected integer i the i-th member
of the population. This method could be adapted to the case of sampling
without replacement by storing the already selected integers and extracting

3 Sampling by the use lots is mentioned several times in the Bible (e.g., Ne-
hemiah 11:1)



60 2 Data summarization: state-of-the-art techniques

random integers until β distinct integers are selected. This simple algorithm
can perform efficiently if β � Nz, as the probability of selecting more times
the same integer is low. However, a deterministic upper bound of the number
of extractions can not be provided, and many extractions yielding duplicate
integers could be required in practice.

In order to define a systematic strategy in drawing a random sample with-
out replacement, the sample could be drawn by scanning all the members of
the population, and choosing with a probability pi the i-th member. Being m
the number of members that have been already included in the sample when
the choice about the i-th is going to be taken, it can be proved that adopting

pi,m =
β −m

Nz − i+ 1
(1 ≤ i ≤ Nz) (2.8)

as probability to include the i-th member in the sample, at the end of the
scanning a random sample of size β is obtained [40]. That is, each of the Nz

has been chosen with probability β/Nz.
Obviously, this approach has complexity O(Nz), as one variate must be

computed for almost each member of the population. In order to decrease the
complexity, it is possible to define a probability function to be adopted to
skip a number of members after selecting each one [125]. If the i-th member
has been selected as the m-th (m < β) in the sample, the number S(i,m) of
elements to be skipped for including another member in the sample can be
chosen according to a probability function fi,m(s) = Pr{S(i,m) = s}, with
0 ≤ s ≤ (Nz − i) − (β −m). The mean of this probability function, in order
to obtain an unbiased sampled, must be

E[fi,m(s)] =
(Nz − i) − (β −m)

n−m+ 1
. (2.9)

The function fi,m(s) can be defined as

fi,m(s) =

(
(Nz − i) − s− 1
β −m− 1

)
(
Nz − i
β −m

) . (2.10)

In this case, only β variates must be computed, instead of Nz. However, the
cost of computing each variate, in order to compute the skip length after select-
ing each member, is O(Nz

β ), therefore the complexity of the overall sampling
procedure has not been decreased. Efficient algorithms for obtaining a ran-
dom sampling with complexity O(β) were proposed by Vitter in [125] and by
Ahrens and Dieter in [4]. The algorithms are based on the adoption of variates
easier to compute than the exact one. Specifically, in [4] the authors proposed
two methods based on the adoption of geometrically distributed random vari-
ates with mean equal to the mean of function represented by Equation 2.10.



2.4 Sampling 61

If at the end of the process less than β members have been selected, the pro-
cess is repeated. In order to avoid duplicates, the sample obtained at the first
step must be stored into an array of size β. Thus, these methods have spatial
complexity linear in the size of the required sample. The method proposed in
[125] was shown in [126] to be slightly slower than one of the two proposed in
[4], but it has the advantage to yield the sample in one pass, therefore it can
be run with constant space complexity (of course, this is an advantage only if
there is no need to store the sample).

The use of sampling in databases as been largely proposed since the early
1980s in the context of query optimization and exploratory data analysis.
As described in Chapter 1, in these contexts fast approximate estimations
of range queries can be preferable to slow exact answers. A few approaches
based on the adoption of a data sample as database abstract for efficiently
computing approximate query answers have been proposed [2, 49]. In fact,
the majority of proposed techniques exploiting sampling for efficiently esti-
mating query answers, rather than adopting sampling for obtaining synopses
summarizing data on which performing all the estimates, adopt the sampling
as an on-line operation [59, 62]. That is, a sample of data is drawn when it
is needed to perform an estimate. Therefore, this sampling techniques, even
though are techniques supporting efficient query estimation, can not be prop-
erly considered data summarizing techniques.

The on-line sampling techniques have the advantage consisting in the pos-
sibility do adapt somehow the sampling operation during its execution (adap-
tive sampling). For example, it is possible to continue in extracting data until
a desired confidence level is guaranteed with a certain probability. This pos-
sibility, of course, enables to achieve better estimations, in terms of accuracy,
than those obtained by means of pre-computed data synopses, such as his-
tograms. On the other hand, on-line sampling requires disk accesses, then
it usually results much more time-consuming than the adoption of summa-
rized representations of data that can be kept in main memory. Observe that,
if members of the data population are accessed randomly and independently
one another, the number of required accesses to disk blocks could be computed
by Yao’s formula (Equation 1.2). According to that formula, the number of
accessed pages grows almost linearly with the number of retrieved tuples. A
form of convenience sampling, namely cluster sampling, which adopt a disk
page as sample unit could be adopted to decrease the number of disk access
[64]. However, if tuples were not randomly distributed among pages, the ob-
tained sample would be biased. Several studies have been proposed in order
to make on-line sampling efficient and capable of providing answers within a
desired degree of accuracy [89]. The common idea on which these techniques
are based is to iteratively sample tuples from data until a stopping condition
is reached depending on the current sample and the desired approximation
degree [58, 90, 91]. Some techniques [65] are based on a two-stage sampling
(double sampling): first a certain number of tuples is sampled, then, on the



62 2 Data summarization: state-of-the-art techniques

basis of information obtained by the first sample, a certain number of tuples
is further sampled in order to obtain the required estimate accuracy.

A general algorithm for answering range queries by means of a sampling-
based technique is depicted in Fig. 2.12. In this algorithm a sampling source

INPUT S: a sampling source;
Nz:the number of non-null points tuples;
r: a range defined on the same domain V ;

OUTPUT s: the estimate of the sum of frequencies as-
sociated to values inside r;

begin
s = 0;
n = 0;
while (NOT reachedStopCondition()) do begin

p = S.extractTuple();
if (p ∈ r) then s = s + D[p];
n = n + 1;

endwhile;
return Nz

n
· s ;

end;

Fig. 2.12. General algorithm for answering range queries by means of sampling

S is assumed, from which at each step a tuple p is obtained and its associated
value D[p] is adopted to update the current query answer s related to the
sampled tuples, until a stopping condition is reached. Finally, assuming that
the sample adopted is unbiased, the answer to the query is estimated as the
product between the answer s estimated on the sample and the ratio between
the total number of tuples Nz and sample size n. Observe that this algorithm
generalize also the case of off-line sampling. In this case, the sampling source
is a list representing the pre-computed sample which can be simply scanned
until its end.

2.5 Histograms vs. other techniques

Among the multitude of data-summarization proposals available in literature,
histogram-based techniques undoubtedly hold the primacy in numerousness.
In practical applications the use of histograms is definitely the most common
in approximating data distributions. The most known commercial DBMSs
adopt histograms for maintaining the statistics adopted as support for the



2.5 Histograms vs. other techniques 63

task of query optimization. This is due to the larger flexibility of nonpara-
metric techniques, which the histogram-based techniques belong to, and to
the negligible run-time costs in which histogram-based techniques incur in
estimating query answers.

As regards the comparison between parametric and nonparametric tech-
niques, the former ones can certainly be exploited more efficiently than the
latter ones in estimating queries. In fact, they assume that actual fit a well de-
fined mathematical model, depending on a few parameters which are constant
in number independently of the actual difficulty in approximating the data
distribution. That is, if a linear regression model or a gaussian distribution
is adopted to model a one-dimensional data distribution, only two parame-
ters will be adopted to describe a data distribution which can be more or less
large and more or less skewed. The estimations will reduce in computing either
the function approximating the data distribution in one point (for equality
queries) or the integral of the function in two points (for range queries). How-
ever, general data are unlikely to be approximated with good accuracy by a
priori chosen mathematical models. Furthermore, changing the approxima-
tion model on convenience could be infeasible, unless restricting the attention
to few models, thus only partially limiting the problem. The obstinacy of some
scientific researchers in trying to make general phenomena, especially human-
related ones, fit mathematical models has been sometimes criticized (and also
mocked) by researchers of humanistic disciplines [51]. The objective difficulty
in representing general data by means of mathematical models has been per-
ceived by database researchers since the early 1980s, when nonparametric
techniques began to increase their preeminence w.r.t. the parametric ones
which had been the only adopted during the 1970s to approximate data dis-
tributions. Christodoulakis, with his several works [27, 28, 29, 30, 31], strongly
contributed to that evolution in research, clearly showing that modelling data
distributions by means of simple statistical models yields biased estimations.

The recent adoption of mathematical transforms, in particular the discrete-
wavelet-based one, seems to be promising. However, the effectiveness of the
techniques has been showed to be strongly related to the thresholding strategy
of the coefficients yielded by the transform. Even though some sophisticate
strategies have been proposed [45, 46, 47, 48], they have only been tested on
one-dimensional data.

As regards the nonparametric techniques, that is the histogram- and the
sampling-based ones, is has been remarked before that the sampling-based
techniques which can outperform in accuracy the histogram-based ones, are
those based on on-line sampling. On-line sampling, in fact, enable to adapt the
sampling to satisfy accuracy requirements. However, these are not properly
summarization techniques, and they are not suitable to perform very fast
estimations, which are needed especially in evaluating the cost of a large
number of possible query execution plans, as they may require several disk
accesses. Furthermore, in exploratory data analysis, once a random sample
belonging to a region of data satisfying some conditions is retrieved, if a larger



64 2 Data summarization: state-of-the-art techniques

region has to be studied, a new sample must be retrieved, as a random sample
built on a set S of data is not generally also a random sample of a superset
of S.

On the basis of these considerations, in the following of this thesis
histogram-based techniques will be deeply investigated. Specifically, an im-
provement in the class of histogram-based techniques which construct the
histogram according to a hierarchical binary partition of the data domain will
be proposed in Chapter 3, and a new approach based on the exploitation of
cluster analysis to partition data will be presented in Chapter 4.



3

Hierarchical Binary Histograms

As introduced in Section 2.3, constructing the optimal histogram (i.e., the
histogram having buckets with the lowest variance) summarizing a data dis-
tribution defined over a d-dimensional domain (with d ≥ 2) within a storage
space bound has been proved to be an NP-hard problem [104]. Therefore,
the majority of the approaches proposed in literature aims at constructing
“good” histograms by imposing some constraints to the partitioning scheme
of the data domain. In particular, several of the best known histogram-based
summarization techniques for multi-dimensional data, such as the first pro-
posed equi-depth approach [103], and the more recent MHIST [111] and Min-
Skew [3], builds partitions of the data domain that belong to the class of the
hierarchical binary partitions.

In this chapter the class of histograms based hierarchical binary partitions
is deeply investigated and it will be shown how to exploit its characteristics
in order to improve the histogram performances.

Specifically, the hierarchical partition scheme underlying the histogram is
exploited in order to obtain a lossless compression affecting positively the ac-
curacy and, surprisingly, even the efficiency of query answering. Then, the
adoption of a further restriction on the partitioning is investigated, which
enables a more compact representation of bucket boundaries. Basically, this
restriction consists in constraining the split of a bucket to be laid onto a reg-
ular grid defined on the bucket itself. Several heuristics guiding the histogram
construction are also proposed, and a thorough experimental analysis compar-
ing the accuracy of histograms resulting from combining different heuristics
with different representation models (both the new compression-based and
the traditional ones) is provided. The best accuracy turns out from combin-
ing the grid-constrained partitioning scheme with one of the new heuristics.
Histograms resulting from this combination are compared with state-of-the-
art summarization techniques, showing that the proposed approach yields
lower error rates and is much less sensitive to dimensionality, and that adopt-
ing the new compression scheme results in improving the efficiency of query
estimation.



66 3 Hierarchical Binary Histograms

3.1 Hierarchical Binary Partitions

Before introducing the class of hierarchical-binary-partition-based histograms,
the hierarchical binary partition must be introduced. This kind of partition
can be obtained by recursively applying an operation called binary split.

Definition 3.1 (Binary Split) Given a block b = 〈ρ1, . . . , ρd〉, let x be a
coordinate on the i-th dimension of b such that lb(ρi)≤x<ub(ρi). Coordinate
x divides the range ρi of b into ρlow

i = [lb(ρi)..x] and ρhigh
i = [(x+1)..ub(ρi)],

thus partitioning b into the two sub-blocks blow = 〈ρ1, . . . , ρ
low
i , . . . , ρd〉 and

bhigh = 〈ρ1, . . . , ρ
high
i , . . . , ρd〉. The pair 〈blow, bhigh〉 is said to be the binary

split of b at the splitting position 〈i, x〉, where i and x are said to be the
splitting dimension and the splitting coordinate, respectively.

Informally, a binary partition can be obtained by performing a binary
split on D (thus generating the two sub-blocks Dlow and Dhigh), and then
recursively partitioning these two sub-blocks with the same binary hierarchical
scheme. The set of applied binary splits, defines a hierarchy which can be
represented by a binary tree whose leaves represents a partition of the data
domain.

Definition 3.2 (Hierarchical Binary Partition) Let D be a d-dimensional
data distribution with volume nd, a hierarchical binary partition P of D is a
binary tree such that:

1. the root of P is the block 〈[1..n], . . . , [1..n]〉;
2. for each internal node p of P , its children represent a binary split of p

itself. �

The set of nodes, and the set of leaves of the binary partition P will be
denoted, respectively, as Nodes(P ) and Leaves(P ).

An example of hierarchical binary partition on a two-dimensional data
distribution is shown in Fig. 3.1.

3.2 Flat Binary Histograms

In this section a formal abstraction of classical histograms based on binary
partitions, such as MHIST [111] and Min-Skew [3], is provided. This class
of histograms is referred as Flat Binary Histograms (FBH), to highlight the
basic characteristic of their physical representation model. The term “flat”
means that, classically, buckets are represented independently from one an-
other, without exploiting the hierarchical structure of the underlying partition.

Definition 3.3 (Flat Binary Histogram) Let D be a d-dimensional data
distribution and P be a hierarchical binary partition of D, the Flat Binary
Histogram on D based on P is the set of pairs:



3.2 Flat Binary Histograms 67

Fig. 3.1. A hierarchical binary partition

FBH = {〈b1, sum(b1)〉, . . . , 〈bβ , sum(bβ)〉},
where the set {b1, . . . , bβ} coincides with Leaves(P ). �

In the following, given the flat binary histogram:

FBH = {〈b1, sum(b1)〉, . . . , 〈bβ , sum(bβ)〉},
the blocks b1, . . . , bβ will be said to be the buckets of FBH, and the set
{b1, . . . , bβ} will be denoted as Buckets(FBH).

The blocks b1, . . . , bβ will be said to be buckets of FBH, and the set
{b1, . . . , bβ} will be denoted as Buckets(FBH).

Fig. 3.2. Constructing an FBH based on the hierarchical binary partition of Fig. 3.1

Fig. 3.2 shows how the two-dimensional flat binary histogram correspond-
ing to the binary partition of Fig. 3.1 can be obtained by progressively per-
forming binary splits. The histogram consists of the following set:
{ < 〈[1..x1], [1..n]〉 , 50 >,
< 〈[x1+1..n], [1..y2]〉, 61 >,
< 〈[x1+1..x2], [y2+1..y1]〉, 0 >,
< 〈[x2+1..n], [y2+1..y1]〉, 63 >,
< 〈[x1+1..n], [y1+1 .. n]〉, 82 > }.



68 3 Hierarchical Binary Histograms

A flat binary histogram can be represented by storing, for each bucket of
the partition, both its boundaries and the sum of its elements. In the following
it will be assumed that integer values will be represented by means of 32-bit
words. In order to exploit as much as possible the available storage space, usu-
ally the boundaries of the buckets are not represented explicitly (this would
require 2·d words for each bucket): the data domain is linearized and the bound-
aries of the bucket b = 〈ρ1, . . . , ρd〉 are translated into the one-dimensional
coordinates in this linearized space of the two points p1 = 〈lb(ρ1), . . . , lb(ρd)〉
and p2 = 〈ub(ρ1), . . . , ub(ρd)〉, i.e. the nearest and the farthest corner of the
bucket w.r.t. the point 〈0, . . . , 0〉, respectively. The amount of storage space
needed to represent p1 and p2 depends on the size of the data domain. In the
following, ξ will denote the number of words needed to encode the coordinates
of a multi-dimensional point adopting the above-explained strategy 1. There-
fore the amount of storage space needed to store an FBH with β buckets is
given by

size(FBH) = 32 · (2 · ξ + 1) · β bits. (3.1)

MHIST and Min-Skew algorithms use a different representation of buckets:
instead of storing the ranges delimiting the leaves of the binary partition, they
store, for each leaf, the coordinates of its MBR (minimal bounding rectangle,
see Section 2.3.4). For instance, consider the case that D is a two-dimensional
data distribution with two points in it, placed at the ends of a diagonal.
According to this representation model, splitting D will lead to two single-
pointMBRs. W.r.t. the naive representation model introduced above for FBH,
this aims at a higher accuracy in approximating D, and introduces no spatial
overhead. In fact, representing the coordinates of the MBR inside a bucket
b has the same cost as representing the boundaries of b, but the information
provided by the MBR on where non null elements are located inside b is more
accurate.

In Section 3.3 an alternative representation scheme is proposed, which does
not enable MBRs to be stored, but allows bucket boundaries to be represented
more efficiently, so that a larger number of buckets can be stored within the
same storage space bound.

3.3 Hierarchical Binary Histograms

The hierarchical partition scheme underlying a flat binary histogram can be
exploited to define a new class of histogram, which improves the efficiency
of the physical representation. It can be observed that most of the storage
space consumption (i.e., 2 · ξ · |Buckets(FBH)| words) of an FBH is due to

1 ξ =
l

log2 nd

32

m
=

l
d·log2 n

32

m
. Observe that for high-dimensional data a single 32-

bit word is unlikely to suffice to represent a point in a d-dimensional space, as
d · log2 n > 32 generally holds.



3.3 Hierarchical Binary Histograms 69

the representation of the bucket boundaries. Indeed, buckets of a flat binary
histogram cannot describe an arbitrary partition of the multi-dimensional
space, as they are constrained to obey a hierarchical partition scheme. It is
rather expected that exploiting this characteristic would improve the spatial
efficiency of the representation. Specifically, the boundaries of two buckets of
an FBH corresponding to a pair of siblings in the underlying binary partition
can be derived by the boundaries of their parent together with the splitting
position generating them. For instance, consider two buckets bi, bi+1 which
correspond to a pair of siblings in the hierarchical partition underlying the
histogram; bi, bi+1 can be viewed as the result of splitting a block b of the
multi-dimensional space along one of its dimensions and, therefore, they have
2d−1 coinciding vertices. However, in FBH histograms adopting this naive rep-
resentation scheme, these coinciding vertices are stored twice, as the buckets
are represented independently of each other. Therefore, the simple FBH rep-
resentation paradigm defined in Section 3.2 does not exploit the hierarchical
nature of the partition.

The idea underlying Hierarchical Binary Histogram consists in explicitly
storing the splitting position of the binary split generating the partition, thus
avoiding the explicit storing of bucket boundaries. Storing the structure of
the partition enables the boundaries of the buckets (which correspond to the
leaves of the partition tree) to be retrieved from the partition itself. Moreover,
as storing the partition tree is less costly (in terms of amount of storage space)
than storing bucket boundaries (as it will be explained in the following), some
storage space can be saved and invested to obtain finer grain buckets.

Definition 3.4 (Hierarchical Binary Histogram) Given a d-dimensional
data distribution D and a hierarchical binary partition P of D, the Hierarchi-
cal Binary Histogram on D based on P is the pair HBH = 〈P, S〉, where S is
the set of pairs {〈p, sum(p)〉 | p ∈ Nodes(P )}. �

In the following, given HBH = 〈P, S〉, the term Nodes(HBH) will denote
the set Nodes(P ), whereas Buckets(HBH) will denote the set Leaves(P ).

A hierarchical binary histogram HBH = 〈P, S〉 can be stored efficiently by
representing P and S separately, and by exploiting some intrinsic redundancy
in their definition. To store P , first of all one bit per node is needed to specify
whether the node is a leaf or not. As the nodes of P correspond to ranges
of the multi-dimensional space, some information describing the boundaries
of these ranges has to be stored. This can be accomplished efficiently by
storing, for each non leaf node, the splitting position which defines the ranges
corresponding to its children. Therefore, each non leaf node can be stored
using a string of bits, having length 32 + �log2 d� + 1, where 32 bits are
used to represent the splitting coordinate, �log2 d� to represent the splitting
dimension, and 1 bit to indicate that the node is not a leaf. On the other
hand, 1 bit suffices to represent leaf nodes, as no information on further splits
needs to be stored. Therefore, the partition tree P can be stored as a string of



70 3 Hierarchical Binary Histograms

D

D.1 D.2

D.2.1 D.2.2

D.2.1.1 D.2.1.2

(256)

(50) (206)

(124) (82)

(61) (63)

D.2.1.2.1 D.2.1.2.2

(0) (63)

D

256

D.1

50

D.2.1

124 61

D.2.1.1

Array (HBH)

D D
.1

D
.2

1 x1

S

Array (HBH)
P

HBH

0 1 y110 1 y21

D
.2
.1

D
.2
.2

0

D
.2
.1
.1

D
.2
.1
.2

1 x200

D
.2
.1
.2
.1

0 0

D
.2
.1
.2
.2

0

D.2.1.2.1

1

0

: the node D has been split (i.e. has two children)

: (the split has been performed along the
horizontal dimension)

:

splitting dimension

x splitting coordinate1

Fig. 3.3. Representation of an HBH

bits (denoted as ArrayP (HBH)) consisting of the concatenation of the strings
of bits representing P nodes.

The pairs 〈p1, sum(p1)〉, . . . , 〈pm, sum(pm)〉 of S (where m is the cardinal-
ity of Nodes(HBH)) can be represented using an array containing the values
sum(p1), . . . , sum(pm), where the sums are stored according to the ordering
of the corresponding nodes in ArrayP (HBH). Indeed, it is worth noting that
not all the sum values in S need to be stored, as some of them can be de-
rived. For instance, the sum of every right-hand child node is implied by the
sums of its parent and its sibling. Therefore, for a given hierarchical binary
histogram HBH, the set Nodes(HBH) can be partitioned into two sets: the
set of nodes that are the right-hand child of some other node (which will be
called derivable nodes), and the set of all the other nodes (which will be called
non-derivable nodes). Derivable nodes are the nodes which do not need to be
explicitly represented as their sum can be evaluated from the sums of non-
derivable ones. The sums associated to non-derivable nodes are stored into
the array ArrayS(HBH).

The application of this representation paradigm to the HBH shown on
the left-hand side of Fig. 3.32 is shown on the right-hand side of the same
figure, where non-derivable nodes are colored in grey, whereas derivable nodes
are white. Leaf nodes of HBH are represented in the array ArrayP (HBH) by
means of a unique bit, with value 0. As regards non-leaf nodes, the first bit of
their representation is 1 (meaning that these nodes are split); the second bit
is 0 if the node is split along the horizontal dimension, 1 otherwise.

This representation scheme can be made more efficient by exploiting the
possible sparsity of the data. In fact it often occurs that the size of the multi-
dimensional space is large w.r.t. the number of non-null elements. Thus, it is
expected that null blocks are very likely to occur when partitioning the multi-
dimensional space. This leads us to adopt an ad-hoc compact representation

2 Observe that this is the representation of the same partition of a two-dimensional
data domain depicted in Fig. 3.2



3.3 Hierarchical Binary Histograms 71

of such blocks in order to save the storage space needed to represent their
sums. A possible efficient representation of null blocks could be obtained by
avoiding storing zero sums in ArrayS(HBH) and by employing one bit more
for each non-derivable node in ArrayP (HBH) to indicate whether its sum is
zero or not. Indeed, it is not necessary to associate one further bit to the
representation of derivable nodes, since deciding whether they are null or not
can be done by deriving their sum. Moreover, observe that there is not interest
inHBHs where null blocks are further split since, for a null block, the zero sum
provides detailed information of all the values contained in the block, thus no
further investigation of the block can provide a more detailed description of its
data distribution. Therefore any HBH can be reduced to one where each null
node is a leaf, without altering the description of the overall data distribution
that it provides. It follows that in ArrayP (HBH) non-leaf nodes do not need
any additional bit either, since they cannot be null. According to this new
representation model, each node in ArrayP (HBH) is represented as follows:

- if the node is not a leaf, it is represented using a 32 + �log2 d� + 1 bits, where
32 bits are used to represent the splitting coordinate, �log2 d� to represent
the splitting dimension, and 1 bit to indicate that the node is not a leaf;

- if the node is a leaf, it is represented using one bit to state that the node
has not been split and, only if it is a non-derivable node, one additional bit
to specify whether it is null or not.

On the other hand ArrayS(HBH) represents the sums of all non-null non-
derivable nodes.

D

256

D.1

50

D.2.1

124 61

D.2.1.1

Array (HBH)
S

Array (HBH)
P

D
.2

1 y111 1 y21

D
.2
.1

D
.2
.2

0

D
.2
.1
.1

D
.2
.1
.2

1 x201

D
.2
.1
.2
.1

0 0

D
.2
.1
.2
.2

D D
.1

1 x10 0 0 0

0

1

: the node is a leaf

: the node is not null

0

0

: the node is a leaf

: the node is null

Fig. 3.4. Efficient representation of an HBH

A possible representation of the HBH shown on the left-hand side of
Fig. 3.3 according to this new model is provided in Fig. 3.4. In particular,
both non-leaf nodes and derivable leaf nodes are stored in the same way as in
Fig. 3.3, whereas non-derivable leaf nodes are represented with a pair of bits.
The first one of these has value 0 (which states that the node has not been
split), and the second one is either 0 or 1 to indicate whether the node is null
or not, respectively.

The size of the storage space needed to represent an HBH with β buckets
according to this model is the sum of four contributions:



72 3 Hierarchical Binary Histograms

1. the number of bits needed to represent the structure of the partition tree,
that is 2 · β − 1;

2. the number of bits representing the splitting position for each non-leaf
node, that is (β−1) · (�log d�+32);

3. the number of bits associated to all non-derivable leaf nodes to indicate if
they are null or not. This number ranges from 1 to β−1, which correspond
to the cases that all but one leaf nodes are derivable, and all but one leaf
nodes are non-derivable;

4. the number of 32-bit words needed to represent ArrayS(HBH), that is
one word for each non-null non-derivable node. This number ranges from
1 to β.

According to the physical representation model presented above, it can be
easily shown that the maximum size of an HBH with β buckets is

sizemax(HBH) = β · (67 + �log d�) − (34 + �log d�) bits, (3.2)

which corresponds to the case that all but one leaf nodes are non-derivable,
and all non-derivable nodes are not null. Observe that that the size of a
hierarchical binary histogramHBH is less than the size of the “corresponding”
flat binary histogram FBH having the same partition tree. These can be easily
proved considering that the storage space needed to represent FBH with β
buckets is (64 · ξ+ 32) · β, and 64 · ξ+ 32 > 67 + �log d� for any ξ ≥ 1 and for
any practically significant value of d.

Moreover, the information stored in an HBH is “better” organized than
the corresponding FBH, as HBH represents the sums associated with all the
nodes (not only the leaves) of the partition tree, which can be exploited to
evaluate queries more efficiently, as it will be clearer later.
Remark. Observe that the physical representation model introduced above
cannot be used to represent the coordinates of the MBRs inside buckets. This
is due to the fact that MBRs of two sibling nodes of a binary partition in
general do not coincide with node boundaries, because the two partitions can
be shrunk to eliminate any null spaces around.

3.4 Grid Hierarchical Binary Histograms

In the previous section it has been shown how the binary partition scheme
underlying a hierarchical binary histogram can be exploited to reduce the
amount of memory needed to represent bucket boundaries. In this section,
further constraints are introduced on the partition scheme adopted to define
the boundaries of the buckets: the basic idea is that the use of a constrained
partitioning enables a more efficient physical representation of the histogram
w.r.t. histograms using more general partition schemes. The saved space can
be invested to obtain finer grain blocks, approximating data in more detail.



3.4 Grid Hierarchical Binary Histograms 73

By analyzing the storage space needed to represent a binary split, it turns
out that the splitting coordinate representation, which employs 32 bits, it is
likely to overwhelm the �log d� bits needed to represent the splitting dimen-
sion. This is due to the fact than the number of dimensions of data distribution
can be several orders of magnitude less than the size of each dimension. If the
splitting coordinate is constrained to assume one of a set of fixed coordinates,
the number of bits needed to represent it can be dramatically reduced. On the
basis of this considerations, it is possible to define a new class of histograms.
A Grid Hierarchical Binary Histogram (GHBH) is a hierarchical binary his-
togram whose internal nodes cannot be split at any position: every split of
a block is constrained to be laid onto a grid, which divides the block into a
number of equal-size sub-blocks. This number is a parameter of the partition,
and it is the same for every block of the partition tree.

Definition 3.5 (k-degree Binary Split) Given a block b =< ρ1, . . . , ρd >,
a binary split of degree k is a binary split at the position 〈i, x〉 with 1 ≤ i ≤ d

and x = lb(ρi) +
⌈
j · size(ρi)

k

⌉
− 1 for some j ∈ [1 .. k−1].

Informally, a binary split of degree k is constrained to assume one of the
k−1 coordinate that partition the splitting dimension into k portions of equal
size. On the basis of this constrained split, it is possible to define the con-
strained hierarchical binary partition, and a new class of hierarchical binary
histograms.

Definition 3.6 (k-degree Grid Hierarchical Binary Partition) Given a
d-dimensional data distribution D, a grid hierarchical binary partition of de-
gree k of D is a hierarchical binary partition P of D such that, for each
non-leaf node p of P , the pair of children of p is a binary split of degree k of
p. �

Definition 3.7 (k-degree Grid Hierarchical Binary Histogram) Given
a d-dimensional data distribution D, a Grid Hierarchical Binary Histogram
of degree k on D is a hierarchical binary histogram k-GHBH = 〈P, S〉 on D
where P is a grid hierarchical binary partition of degree k of D. �

In the following, GHBH will be adopted as an acronym of grid hierarchical
binary histogram without specifying the degree k of the partition when k is
not relevant. Fig. 3.5 shows an example of a two-dimensional 4-GHBH.

Constraining each split of the partition to be laid onto a grid defined on the
blocks of the histogram enables some storage space to be saved to represent
the splitting coordinate. In fact, for a grid binary partition of degree k, the
splitting coordinate can be derived from the order of the “notch” which has
been chosen among the k−1 possible notches on the splitting dimension on
which the splitting coordinate is constrained to be laid. Therefore, the splitting
coordinate can be stored using �log2(k−1)� bits, instead of 32 bits. In the
following, degree values which are a power of 2 will be considered, so that



74 3 Hierarchical Binary Histograms

Fig. 3.5. Constructing a 4-GHBH

D

D.1 D.2

D.2.1 D.2.2

D.2.1.1 D.2.1.2

(200)

(50) (150)

(130) (20)

(0) (130)

D

200

D.1

50

D.2.1

130

Array (GHBH)
SGHBH

1

0

01

: the node D has been split (i.e. has two children)

: (horizontal dimension)

:

splitting dimension

splitting notch (the split has been performed at
the second notch, which is at half way point of
the horizontal dimension)

Array (GHBH)
P

D
.2

1 11 1 1

D
.2
.1

D
.2
.2

0

D
.2
.1
.1

D
.2
.1
.2

0

D D
.1

1 0 0 001 00 10 0

Fig. 3.6. Representing the 4-GHBH of Fig. 3.5

the space consumption needed to store the splitting coordinate will be simply
denoted as log2 k. Fig. 3.6 shows the representation of the grid hierarchical
binary histogram of Fig. 3.5.

The maximum storage space consumption of a grid hierarchical binary his-
togram with β buckets can be obtained from the analogous formula for hier-
archical binary histograms by reducing the space needed to store the splitting
coordinates from (β − 1) · 32 to (β − 1) · log k, thus obtaining

sizemax(GHBH) = β · (35+ �log d�+ log k)− (2+ �log d�+ log k) bits. (3.3)

3.5 Spatial efficiency of representation models

In this section the results of Equations 3.1, 3.2, and 3.3, stating the size of an
FBH, and the maximum size of an HBH and a GHBH w.r.t. the number of
buckets, will be extended and formally proved. Specifically, the efficiency of the
different physical representation models is compared by evaluating the number
of buckets of a histogram H of type FBH, or HBH or GHBH saturating
a storage space bound B. In the following, given a storage space bound B
expressed in bits, a histogram H will be said to be B-maximal if size(H) ≤ B



3.5 Spatial efficiency of representation models 75

and no split can be performed on any bucket of H, otherwise the storage space
consumption of H would exceed B.

Type of Histogram Minimum and maximum number of buckets

FBH βmin
FBH = βmax

FBH =
j

B
32·(2·ξ+1)

k

HBH βmin
HBH =

j
B+�log d�+34

67+�log d�

k
, βmax

HBH =
j

B+�log d�+2
35+�log d�

k

k-GHBH βmin
GHBH =

j
B+log k+�log d�+2
35+log k+�log d�

k
, βmax

GHBH =
j

B+log k+�log d�−30
3+log k+�log d�

k

Table 3.1. Minimum and maximum number of buckets for B-maximal histograms
of various types

Proposition 3.1 Let D be a d-dimensional data distribution, B a storage
space bound, and T a type of histogram (where T is either FBH, HBH or
k-GHBH). The number of buckets βT of a B-maximal histogram H of type
T on D is in the range [βmin

T ..βmax
T ] where βmin

T and βmax
T are reported in

Table 3.1, where ξ is the number of 32-bit words needed to represent a point
of the linearized data domain (ξ = d if no linearization is adopted).

Proof.
1. T=FBH.
The size of an FBH with β buckets is size(FBH)=(2 · ξ + 1) · 32 · β bits, so
that size(FBH) ≤ B holds for all values of β ≤

⌊
B

32·(2·ξ+1)

⌋
. Therefore the

latter bound on β is the number of buckets of a B-maximal FBH.
2. T=HBH or T=k-GHBH.
An HBH, as well as a k-GHBH, with β buckets has a space consumption
which can vary between a minimum and a maximum value (depending on the
partition tree and on the data distribution). Let sizemin

T (β) and sizemax
T (β)

denote, respectively, the minimum and the maximum space consumption of
any histogram of type T having β buckets. The upper bound on the number
of buckets of a B-maximal histogram of type T is obtained as the largest value
of β which satisfies the inequality sizemin

T (β) ≤ B. Similarly, the lower bound
on the number of buckets of a B-maximal histogram of type T is obtained as
the largest value of β which satisfies the inequality sizemax

T (β) ≤ B.
According to the physical representation of an HBH described in Section 3.3,
the size of an HBH H with β buckets can be expressed as the sum of four
contributions:
sizeHBH(H) = (2 ·β−1)+(β−1) ·(�log d�+32)+ndl(H)+32 ·ndn+(H), where
ndl(H) and ndn+(H) stand for the number of non-derivable leaves of H and,



76 3 Hierarchical Binary Histograms

respectively, the number of non-null non-derivable nodes of H. Analogously,
ndl+(H) and ndl0(H) will denote the number of non-null non-derivable leaves
and, respectively, the number of null derivable leaves of H. As ndl(H) =
ndl+(H)+ndl0(H) and ndn+(H) = β−ndl0(H), then sizeHBH(H) = (2 ·β−
1)+ (β−1) · (�log d�+32)+32 ·β+ndl+(H)− 31 ·ndl0(H). Similarly, the size
of a k-GHBH H with β buckets is
sizeGHBH(H) = (2·β−1)+(β−1)·(�log d�+log k)+32·β+ndl+(H)−31·ndl0(H).

The expressions for sizeT (H) (for either T=HBH and T=GHBH) have
minimum value when ndl+(H) = 0 and ndl0(H) = β − 1, which occurs for a
histogram of type T with β buckets where all but one leaves are non-derivable
and null. Likewise, the expressions for sizeT (H) have maximum value when
ndl+(H) = β − 1 and ndl0(H) = 0, which occurs for a histogram of type T
with β buckets where all but one leaves are non-derivable and not null. Thus
the minimum and maximum storage consumption of an HBH and a GHBH
having β buckets are, respectively:
sizemin

HBH(β) = β · (35 + �log d�) − �log d� − 2;
sizemin

GHBH(β) = β · (3 + �log d� + log k) − �log d� − log k + 30;
sizemax

HBH (β) = β · (67 + �log d�) − �log d� − 34;
sizemax

GHBH(β) = β · (35 + �log d� + log k) − �log d� − log k − 2.
As said above, βmax

HBH , βmax
GHBH , as well as βmin

HBH , βmin
GHBH , are straightforward. �

Observe that while all possible B-maximal histograms of type FBH have
the same number of buckets (for a given B and a given size of the data
domain), this does not hold for HBH and GHBH. This is due to the fact that
the buckets of an HBH (or, equivalently, a GHBH) have a different storage
space consumption depending on the underlying data distribution. Therefore
bounds βmin

HBH , βmin
GHBH , βmax

HBH , βmax
GHBH reported in Table 3.1 have been computed

by considering the case that the available storage space B is equal to the
maximum and minimum storage space consumption of an HBH and a GHBH
histogram, respectively.

Comparing the ranges defining the possible number of buckets of the dif-
ferent types of histogram, the main conclusion that can be drawn is that the
physical representation scheme adopted for an HBH permits us to store a
larger number of buckets w.r.t. an FBH within the same storage space bound,
as the denominator of βmin

HBH (i.e. 67 + �log2 d�) is less than the denominator
of βFBH (i.e. 32 · (2·ξ+1)) even for ξ = 1. Analogously, the constraint on the
splitting position of a GHBH further increases the number of buckets that
can be represented within B, as it can be assumed that log2 k < 32, thus
67 > 35 + log2 k.

In order to give an idea of the benefits (in terms of number of buckets)
introduced by the efficient representation models ofHBH and GHBH, consider
the case of an 8-dimensional data distribution. In this scenario, it is likely that
ξ is at least 2 (as ξ =

⌈
d·log2 n

32

⌉
, a single 32-bit word suffices to encode the

coordinates of the data domain only if n ≤ 16, that is a rather specific case).



3.6 Constructing V-Optimal histogram 77

Therefore the number of buckets of an HBH is between 2 and 4 times the
number of buckets of a FBH on the same data; considering the case of 8-
GHBH, the number of buckets is between 4 and 18 times that of an FBH on
the same data.

As will be shown later, the main consequence of this is that HBH provides
a more effective summarization of D than FBH, and, in turn, GHBH provides
a more detailed partition than HBH.

3.6 Constructing V-Optimal histogram

As introduced in Section 2.3, one of the most important issues when dealing
with multi-dimensional histograms is building the histogram which approxi-
mates “best” the original data distribution, while being constrained to fit in
a given storage space bound. The SSE of a histogram is a widely used metric
to measure its “quality”, in terms of accuracy of the estimated answers. In-
dependently on the class of the underlying partition, the SSE of a histogram
consisting of the buckets {b1, . . . , bβ} is defined as

∑β
i=1 SSE(bi), where the

SSE of a single bucket is given by SSE(bi) =
∑

j∈bi
(D[j] − avg(bi))2. The

histogram having minimum SSE w.r.t. all other histograms of the same size
is said V-Optimal.
Given a space bound B, the histogram on D which has minimum SSE among
all histograms on D whose size is bounded by B is said to be V-Optimal
(w.r.t. B). This notion of optimality can be trivially specialized to the case of
histograms based on binary partitions.

Definition 3.8 (V-Optimal binary-partition-based histogram) Let D
be a d-dimensional data distribution, B a storage space bound, and T a type
of histogram (where T is either FBH, HBH, or k-GHBH). A histogram H� of
type T on D is said to be V-Optimal w.r.t. B if the following conditions hold:

1. size(H�) ≤ B;
2. SSE(H�) = minH′∈HT (D,B) {SSE(H ′)}

where HT (D,B) is the set of all histograms of type T on D whose size is less
than or equal to B. �

The following theorem states the computational complexity of constructing
the V-Optimal FBH, HBH, and GHBH.

Theorem 3.1 Let D be a d-dimensional data distribution, B a storage space
bound, and T a type of histogram (where T is either FBH, HBH, or k-GHBH).
A V-Optimal histogram H� of type T on D w.r.t. B can be computed in the
complexity bounds reported in Table 3.2.



78 3 Hierarchical Binary Histograms

Type of Histogram Complexity bound for the V-Optimal histogram

FBH O(d · B2

ξ2·2d · n2d+1)

HBH O
“
d · B2

2d · n2d+1
”

k-GHBH O
“
d · B2

2d · kd+1 · nd
”

Table 3.2. V-Optimal histogram construction complexity

Proof.
1. T=FBH. The problem of finding the V-Optimal FBH onD can be solved by
the following dynamic programming approach. Given a block b of D, denoting
the storage space needed to represent a single block as γ = (2 · ξ + 1) · 32,
the minimum SSE of any FBH H on b with size(H) ≤ S can be defined
recursively as follows:

1. SSE∗(b, S) = ∞,
if S < γ;

2. SSE∗(b, S) = SSE(b),
if S ≥ γ ∧ (S < 2·γ ∨ vol(b)=1);

3. SSE∗(b, S)= min{SSE∗(blow, S1) + SSE∗(bhigh, S2) |
〈blow, bhigh〉 is a binary split on b,

S1>0, S2>0, S1+ S2=S},
otherwise.

The optimization problem consists in evaluating SSE∗(D,B). As implied by
the above recursive definition, SSE∗(D,B) can be computed after evaluating
SSE∗(b, S) for each block b of D and each S in [0..B] which is multiple of γ.
At each step of the dynamic programming algorithm, SSE∗(b, S) is evaluated
by accessing O(d ·n · B

ξ ) values computed at the previous steps, as the possible
binary splits of a block are O(d ·n) and there are O(B

ξ ) possible ways to divide
S into two halves which are multiple of γ.
The number of different SSE∗(b, S) to be computed are O(B

ξ · n2d

2d ), as the

number of sub-blocks of D are O(n2d

2d ), and the number of possible values of
S are O(B

ξ ).
On the other hand, the SSE of all the sub-blocks of D must be computed.
It can be shown that the cost of accomplishing this task is dominated by
O(n2d). It follows that the overall cost of the dynamic programming algo-
rithm is O(d · B2

ξ2·2d · n2d+1).
2. T=HBH. The problem of finding the V-Optimal HBH can be formalized



3.6 Constructing V-Optimal histogram 79

and solved following the same approach as the one just described for FBH.
The main difference is that when evaluating the optimal HBH on a block
b, two distinct optimization problems must be addressed, corresponding to
the cases that b appears in HBH∗ as either a left-hand child or a right-hand
child of some node. In fact, due to the physical representation paradigm (Sec-
tion 3.5), the storage consumption of an HBH constructed on b is different
in these two cases. Intuitively enough, this leads to a recursive formulation
of the V-Optimal problem which is different from that described for FBH.
The minimum SSE of any HBH H on b having size(H) ≤ S must be de-
fined both in the case that b is considered as a left-hand child node (which
will be denoted by SSE∗

left(b, S)) and a right-hand child node (which will
be denoted by SSE∗

right(b, S)). Both SSE∗
left(b, S) and SSE∗

right(b, S) can
be defined recursively in a way that is similar to the recursive definition
of SSE∗(b, S) for FBH. The main differences are that in the non-recursive
cases (i.e. the cases such that no HBH can be constructed or no split can
be performed on b) more complex conditions on the storage space must be
expressed, as the storage space consumption of b depends also on whether
b is null or not. Moreover the recursive case is defined as the minimum
value of SSE∗

left(b
low, S1)+SSE∗

right(b
high, S2), for each possible binary split

〈blow, bhigh〉 on b, and for each S1 and S2 which are consistent with the bound
S on the overall space consumption allowed on b. The dynamic programming
algorithm must compute both SSE∗

left(b, S) and SSE∗
right(b, S) for each sub-

block of D and for each S in [0..B]. This algorithm computes O(B · n2d

2d ) values
of SSE∗

left(b, S) and O(B · n2d

2d ) values of SSE∗
right(b, S), where each one is

computed in time O(d · n ·B).
3. T=k-GHBH. The problem of finding the V-Optimal k-GHBH can be for-
malized by means of some minor adaptation in the definition of SSE∗

left(b, S)
and SSE∗

right(b, S) introduced for HBHs: 1) each constant which represents
a storage space consumption is changed by replacing the 32 bits needed to
represent the splitting coordinate with log k bits. 2) the minimum value of
SSE∗

left(b, S)+SSE∗
right(b, S) which define the recursive case is evaluated by

considering only the binary splits of degree k.
The dynamic programming algorithm which computes all the values of both
SSE∗

left(b, S) and SSE∗
right(b, S) needed to compute SSE∗

left(D,B) exhibits
a different complexity bound w.r.t. the case of HBH as:

1. The cost of computing a single value of SSE∗
left(b, S) or SSE∗

right(b, S) is
reduced to O(d · k · B), since all the possible binary splits of degree k on
a block are d · k (instead of d · n).

2. Due to the restriction on the possible binary splits of a block, the recursive
definition of SSE∗(D,B) induces the computation of SSE∗

left(b, S) or
SSE∗

right(b, S) for a proper subset of all the possible sub-blocks of D. It

can be shown that the number of such blocks is O(nd · kd

2d ) (instead of



80 3 Hierarchical Binary Histograms

O(n2d

2d )). Thus the number of values of SSE∗
left(b, S) or SSE∗

right(b, S) to

be computed is O(nd · kd

2d ) for each S in [0..B].
3. The cost of computing the SSE of all the O(nd · kd

2d ) blocks is O(nd · kd).

All considered, the cost of the dynamic programming algorithm which com-
putes the V-Optimal GHBH of degree k on D is O(d · B2

2d · kd+1 · nd). �

Results for FBHs in Theorem 3.1 can be viewed as an extension of the
results presented in [104], where the problem of finding the optimal binary hi-
erarchical partition w.r.t. several metrics (including the SSE) has been shown
to be polynomial in the two-dimensional case3. Observe that this result does
not hold for arbitrary partitions, where the problem of finding the V-Optimal
histogram has been shown to be NP-hard in the two-dimensional case [104].
In the one-dimensional case the classes of arbitrary and hierarchical parti-
tions coincide, and thus Theorem 3.1 is consistent with that of [74], where
a polynomial-time algorithm for constructing a V-Optimal histogram on a
one-dimensional data distribution has been proposed.

Comparing results for FBHs, HBHs and GHBHs in Theorem 3.1, it can
be observed that the computational complexity of constructing a V-Optimal
FBH is less than that of computing a V-Optimal HBH within the same stor-
age space bound. Essentially, this is due to the more complex representation
scheme adopted by HBH, whose buckets are represented differently depending
on whether they are null or not, derivable or not. However, the two complexity
bounds have the same polynomial degree w.r.t. the volume of the input data;
moreover the aim of introducing HBH is not to make the construction process
faster, but to yield a more effective histogram. The complexity of building k-
GHBH� is less than that of HBH� as, in the former case, the number of splits
that can be applied to a block are constrained by the grid. Note that if k = n
the complexities of the two cases coincide.

3.7 Greedy algorithms for histogram construction

From the complexity bounds reported in Table 3.2 it is possible to draw
the conclusion that V-Optimal hierarchical histograms can be built in time
polynomial w.r.t. the size of the domain of the input data distribution. In par-
ticular, both FBH� and HBH� can be constructed in nearly quadratic time
w.r.t. nd, whereas k-GHBH� in linear time (since the grid degree k can be
assumed as a constant). Indeed, for high-dimensionality scenarios the size of
the domain is so large that finding the V-Optimal becomes unfeasible. In or-
der to reach the goal of minimizing the SSE, in favor of simplicity and speed,

3 Indeed [104] addresses the dual problem which is equivalent to finding the FBH
which needs the smallest storage space and has a metric value below a given
threshold.



3.7 Greedy algorithms for histogram construction 81

a greedy approach for constructing the histogram is adopted, accepting the
possibility of obtaining a non-optimal solution. As it will be shown later, this
approach can work in linear time w.r.t. Nz (the number of non-null points
inside D), which is generally much smaller than nd (especially in the case of
high-dimensionality data).
The proposed approach can be viewed as an extension of the standard greedy
strategy adopted by MHIST and Min-Skew. It starts from the binary his-
togram whose partition tree has a unique node (corresponding to the whole
D) and, at each step, selects the leaf of the binary-tree which is the most in
need of partitioning and applies the most effective split to it. In particular,
in the case of a GHBH, the splitting position must be selected among all the
positions laid onto the grid overlying the block. Both the choices of the block
to be split and of the position where it has to be split are made according
to a greedy criterion. Every time a new split is produced, the free amount of
storage space is updated, in order to take into account the space needed to
store the new nodes, according to the different representation schemes. If any
of these nodes corresponds to a block with sum zero, the 32 bits used to rep-
resent the sum of its elements are saved. Anyway, only one of the two nodes
must be represented, since the sum of the remaining node can be derived by
difference, by using the parent node. A number of possible greedy criteria
can be adopted for choosing the block which is most in need of partitioning
and how to split it. The greedy strategies tested by experimental analysis are
reported in Table 3.3.

Two of them (namely Max-Redmarg and MaxDiff ) are not new, as they
were used by other techniques (Min-Skew and MHIST, respectively) to drive
the histogram construction. Criteria denoted as marginal (marg) investigate
marginal distributions of blocks. The marginal distribution of a block b along
the i-th dimension, denoted by margi(b), has been defined in Section 1.5. In
the following, the term marginalSSE will be used to denote SSE(margi(b))
for some i ∈ {1..d}.

The resulting algorithm is shown in Fig. 3.7. It uses a priority queue q
where nodes of the histogram are ordered according to their need to be parti-
tioned. At each step, the node at the top of the queue is extracted and split,
and its children are in turn enqueued. Before adding a new node b to the
queue, the function Evaluate(G, b) is invoked, G being the adopted greedy
criterion. This function returns both a measure of the need of b to be parti-
tioned (denoted as need), and the position 〈dim, coord〉 of the most effective
split, according to the adopted criterion G.
For instance, if G =Max-Var/Max-Red, the function returns the SSE of b into
need, and the splitting position which yields the largest reduction of SSE into
〈dim, coord〉. Otherwise, if Max-Red criterion is adopted, the value of need
returned by Evaluate on b is the maximum reduction of SSE which can be
obtained by splitting b, and the returned pair 〈dim, coord〉 defines the position
corresponding to this split.



82 3 Hierarchical Binary Histograms

Criterion The node b to be split, and the splitting position
〈dim, coord〉

Max-Var/ Max-Red

the leaf node b having maximum SSE is chosen, and
split at the position < dim, coord > producing
the maximum reduction of SSE(b) (i.e. SSE(b) −`
SSE(blow) + SSE(bhigh)

´
is maximum w.r.t. every pos-

sible split on b)

Max-Varmarg/

Max-Redmarg

for each leaf node, the marginal SSE along its dimensions
are evaluated, and the node b having maximum marginal
SSE is chosen (dim is the dimension s.t. SSE(margdim(b))
is maximum). Then, b is split at the coordinate coord
laying onto dim which yields the maximum reduction of
SSE(margdim(b)) w.r.t. every possible split along dim

Max-Red

the strategy evaluates how much the SSE of every
leaf node is reduced by trying all possible splits. b
and < dim, coord > is splitting position which corre-
spond to the maximum reduction of SSE (i.e. SSE(b) −`
SSE(blow) + SSE(bhigh)

´
is maximum w.r.t. every possi-

ble split on all the buckets of the histogram)

Max-Redmarg

(used by Min-Skew)

all possible splits along every dimension of all leaf
nodes are performed, and the corresponding reductions of
marginal SSE (along the splitting dimensions) are evalu-
ated. b and < dim, coord> are the bucket and the position
such that the reduction of SSE(margdim(b)) obtained by
splitting b at <dim,coord> is maximum w.r.t. the reduc-
tion of any SSE(margi(b)) (where i ∈ [1..d]) which could
be obtained by performing some split along i

MaxDiff
(used by MHIST)

the leaf node b is chosen whose marginal distribution
(along any dimension i) contains two adjacent values ej ,
ej+1 with the largest difference w.r.t. every other pair of
adjacent values in any other marginal distribution of any
other leaf node. Then b is split along the dimension i by
putting a boundary between ej and ej+1.

Table 3.3. Splitting strategies

The function BinarySplit takes the following arguments: a bucket b of the
histogram, the chosen splitting position and the available storage space B. It
returns the pairs of sub-blocks 〈blow , bhigh〉 obtained by performing the spec-
ified binary split of b. Moreover, it evaluates the storage space consumption
of adding blow and bhigh as children of b (the storage space needed to store
these new buckets depending on the histogram type). If the sum of this stor-
age space consumption with the current size of H is smaller than or equal
to the space bound B, then buckets blow , bhigh are actually inserted into H;
otherwise, H is not updated and the next invocation of overflow( ) will return
true: this ends the histogram construction.



3.7 Greedy algorithms for histogram construction 83

INPUT D: a multi-dimensional data distribution;
B: available amount of storage space for

representing the histogram;
T : the type of histogram to be built

(T ∈ {FBH, HBH, GHBH});
G: the greedy criterion to be adopted;

OUTPUT H: a histogram of type T on D within B;

begin
q := new Queue();
b0 := 〈[1..n], . . . , [1..n]〉;
H := new Histogram(T, b0);
〈need, dim, coord〉 = Evaluate(G, b0);
q.Insert(< b0, 〈need, dim, coord〉 >);
while ( !H.overflow( ) ) do begin

< b, 〈need, dim, coord〉 > = q.GetF irst( );

〈blow, bhigh〉 = H.BinarySplit(b, dim, coord, B);

q.Insert(〈blow, Evaluate(G, blow)〉);
q.Insert(〈bhigh, Evaluate(G, bhigh)〉);

endwhile;
return H;

end

Fig. 3.7. Greedy algorithm

As regards function Evaluate, in the case of FBH and HBH, the splitting
positions to be evaluated for a bucket b are all the positions between the
boundaries of every dimension of b, whereas for GHBH the function computes
only all possible splits laid onto the grid.

The complexity of Greedy Algorithm strictly depends not only on the type
of histogram to be built, but also on the adopted data model. For instance,
a d-dimensional data distribution can be stored into a d-dimensional array
(where each cell is associated to a point of the d-dimensional space), or by
adopting a sparse model, where only non null data are stored as d-tuple. In
the latter case, D will be a set of Nz tuples 〈x1, . . . , xd, val〉, where x1, . . . , xd

are the coordinates and val the value of non-null points. In the following,
complexity bounds and workspace analysis are provided for the greedy algo-
rithms constructing different types of histograms (FBH, HBH, and k-GHBH)
adopting different data models (sparse and non-sparse). Moreover, the use of
pre-computed auxiliary data structures is investigated as a support for the
evaluation of greedy criteria.



84 3 Hierarchical Binary Histograms

3.7.1 Greedy criteria evaluation for FBH and HBH construction

The complexity of computing function Evaluate on a block b is now evaluated
for the case of both the FBH and HBHconstruction, when different greedy
criteria G are used, and when either the sparse data model or the non-sparse
one are adopted. It will be shown that the order of magnitude of the com-
putational complexity of Evaluate(G, b) does not depend on the criterion G.
This is due to the fact that the SSE of a block, as well as its reduction due to
a split, can be computed by scanning marginal distributions, as explained in
the following.

Max-Red

Let b = 〈ρ1, . . . , ρd〉 be the block of D on which function Evaluate is invoked.
Denoting the binary split of b at the position 〈i, j〉 by 〈bl, bh〉, it can be shown
that the reduction of SSE(b) due to this split is given by:

Red(b, i, j) =SSE(b) − (
SSE(bl)+SSE(bh)

)
=

=
vol(bl)·vol(bh)

vol(b)
·
(
sum(bl)
vol(bl)

− sum(bh)
vol(bh)

)2

(3.4)

As sum(bl) =
∑j−lb(ρi)

k=0 marg i(b)[k], and sum(bh) = sum(b) − sum(bl),
then Red(b, i, j) can be computed by accessing marg i(b). In particular, notice
that all possible splits along the dimension dim can be evaluated progressively,
starting from jmin = lb(ρi(b)) to jmax = ub(ρi(b)) − 1. That is, denoting as
bl(k), bh(k) the sub-blocks of b obtained by performing the binary split at
the k-th position, comparing all possible splits along the dimension i can be
accomplished by first computing marg i(b), and then scanning it once, as
sum

(
bl(k)

)
= sum

(
bl(k−1)

)
+ margb

i [k].
The cost of constructing all marginal distributions is either O(d ·nd) (non-

sparse data model) or O(d ·N) (sparse data model). The cost of scanning all
marginal distributions to find the most effective splitting position is O(d · n),
so that the complexity of Evaluate(Max-Red , b) is bounded by either O(d ·nd)
(non-sparse data model) or O(d ·N + d · n) (sparse data model).

Max-Redmarg

The reduction of SSE(margb
i ) due to a split of b at the position 〈i, j〉 can be

shown to be (by applying the definition of SSE):

Redmarg(b, i, j) = Red(b, i, j) · Pi, (3.5)

where Pi is the ratio between the volume of b and the size of its i-th di-
mension. Therefore the computation of Redmarg(b, i, j) can be accomplished



3.7 Greedy algorithms for histogram construction 85

within the same bound as Red(b, i, j), as well as the cost of computing the
splitting position yielding the largest reduction of marginal SSE has the same
complexity bound as computing the splitting position corresponding to the
largest reduction of SSE. This implies that Evaluate(Max-Redmarg, b) can be
computed within the same bound as the case that Max-Red is adopted.

Max-Var / Max-Red

The value of SSE(b) (which is returned as need) is given by:

SSE(b) = sumSquare(b) − (sum(b))2

vol(b)
(3.6)

where sumSquare(b) is the sum of the squares of all values contained in b.
This implies that SSE(b) can be computed by accessing all non null elements
inside b. Therefore the cost of evaluating SSE(b) is O(nd) (non-sparse data
model), or O(N) (sparse data model).
The most effective splitting position can be evaluated in the same way as the
case that Max-Red is adopted, and this cost dominates the cost of computing
SSE(b).
Therefore Evaluate(Max-Var / Max-Red , b) can be computed within the
same bound as the case of Max-Red.

Observe that, when Max-Var/Max-Red is adopted, the strategy used by
Greedy Algorithm can be modified to make the computation of the histogram
more efficient. Instead of computing the most effective splitting position when
a bucket is inserted into the queue q, the value of 〈dim, coord〉 is evaluated
only when the bucket is extracted from q. In fact, when a new bucket is
generated and inserted into q, its position inside the queue depends only on
its SSE; similarly, the bucket which is most in need of partitioning is chosen
only on the basis of its SSE. Therefore, computing the most effective splitting
position 〈dim, coord〉 for a bucket b is useful only in the case that b is extracted
from the queue. By using this strategy, the most effective splitting position
is evaluated half many times as the previous strategy, as the buckets of the
returned histogram (which correspond to the leafs of the underlying partition
tree) have never been chosen to be split during the algorithm execution.

Max-Varmarg /Max-Redmarg

In this case, the marginal distributions of b must be constructed to compute
both the value of need (that is, the maximum variance of the marginal dis-
tributions) and the most effective splitting position. The value of need can
be computed by scanning all marginal distributions, and the reductions of
marginal variance can be evaluated in the same way as the case that Max-
Redmarg is adopted.
Therefore, computing Evaluate(Max-Varmarg/Max-Redmarg, b) has the same
complexity bound as previous cases.



86 3 Hierarchical Binary Histograms

MaxDiff

After constructing the marginal distributions, they are scanned in order to
find the largest difference between two contiguous values of the same marginal
distribution. Therefore, even this criterion has the same complexity bound of
the previous cases.

3.7.2 Greedy criteria evaluation for GHBH construction

The main difference w.r.t. the construction of an HBH is that splitting posi-
tions in a GHBH are constrained by the grid, so that the number of possible
splits to be compared when processing the block b extracted from q is d · k
(instead of d · n, as in the HBH case). The computation of Red(b, i, j) and
Redmarg(b, i, j) corresponding to all the d · k splitting positions can be effi-
ciently accomplished after pre-computing d temporary data structures. Dif-
ferently from the case of HBH, these temporary data structures are not the
marginal distributions of b, but consist in the marginal distributions of grid(b),
which is constructed as follows. grid(b) is a bucket containing kd elements,
where each cell contains the sum of the elements of b located in the corre-
sponding cell of the k-th degree grid overlying b. The marginal distributions
of grid(b) will be denoted as k-marg1, . . . , k-margd. Fig. 3.8 shows the k-
marginal distributions associated to a bucket b w.r.t. a 4th degree grid.

Fig. 3.8. k-marginal distributions of a bucket

Let 〈i, j〉 be an admissible splitting position for the bucket b, and x, x+1 be
the corresponding cells of k-marg i (i.e. the contiguous cells of k-marg i which
would be separated by performing the split). Then, the reduction of SSE(b)
due to this split can be computed using the values vol(bl), vol(bh), sum(bl)
and sum(bh), as explained for the construction of an HBH (see formulas (3.4)
and (3.5)). Specifically,
sum(bl) =

∑
0≤k≤x k-margi[k] and sum(bh) = sum(b) − sum(bl).

Obviously, constructing the k-marginal distributions has either cost O(d ·N)
(sparse data model) or O(d · nd) (non-sparse model), but their scanning has
cost O(d ·k) (instead of O(d ·n), as in the HBH case). Therefore, by applying
the same reasoning explained in the previous section, it is easy to show that



3.7 Greedy algorithms for histogram construction 87

Evaluate(G, b) has cost O(d ·N +d ·α) and O(d ·nd) for the two data models,
respectively, where α = k for all greedy criteria G except Max-Varmarg/Max-
Redmarg. When Max-Varmarg/Max-Redmarg is adopted, α = n: in fact, in
order to apply this criterion, it is necessary not only to access the d k-marginal
distributions to establish the most effective split, but it is also necessary to
access the d marginal distributions (which have size n) in order to compute
the maximum marginal SSE, that corresponds to the value need of the bucket.

3.7.3 Using pre-computation for evaluating greedy criteria

Each invocation of Evaluate(G, b) can be accomplished more efficiently if the
array F of partial sums and the array F 2 of partial square sums are available.
F and F 2 have volume (n + 1)d, and are defined on the multi-dimensional
range 〈[0..n], . . . , [0..n]〉 as follows:

- F [i1, . . . , id] =

⎧⎨⎩
0, if ij = 0 for some j ∈ [1..d] ;

sum(〈1..i1, . . . , 1..id〉), otherwise.

- each element F 2[i1, . . . , id] is either 0 (if ij = 0 for some j ∈ [1..d]) or the
sum of all the values (D[j1, . . . , jd])2 where 1 ≤ jk ≤ ik for each k ∈ [1..d],
otherwise.

Fig. 3.9. Arrays of partial sums and partial square sums

Fig. 3.9 shows an example of arrays of partial sums and partial square
sums.
By using F and F 2 both the SSE of a block b and the reduction the SSE due
to a split of b can be computed efficiently, as both sum(b) and sumSquare(b)
can be evaluated by accessing 2d elements of F and F 2, instead of accessing
all the elements of b. For instance, in the two-dimensional case depicted in Fig.
3.9, sum(〈[2..3], [2..3]〉) = (−1)0 ·F [3, 3]+(−1)1 ·F [1, 3]+(−1)1 ·F [3, 1]+(−1)2 ·
F [1, 1] = 13−5−8+2 = 2. In general, given a block b =〈[l1..u1], . . . , [ld..ud]〉,
the values of sum(b) and sum2(b) can be evaluated as follows:



88 3 Hierarchical Binary Histograms

sum(b) =
∑
i∈b

D[ı] =
∑

j∈vrt(b)

(−1)C(j,uv(b)) · F [j]

and
sumSquare(b) =

∑
i∈b

D[ı]2 =
∑

j∈vrt(b)

(−1)C(j,uv(b)) · F 2[j]

In these expressions:

• b = 〈[l1−1..u1], . . . , [ld−1..ud]〉;
• vrt(b) is the set of vertices 4 of b;
• uv(b) = 〈u1, . . . , ud〉 is the “upper” vertex of b;

• C(ı, j) =
∑d

k=1 f(ik, jk), where: f(a,b) =

8<
:

1,if a 	=b;

0,if a=b.

Then, for any splitting position 〈i, j〉, once sum(bl), sum(bh), and sumSquare(b)
have been computed, either Red(b, i, j), Redmarg(b, i, j) and SSE(b) can be
evaluated using formulas (3.4), (3.5), (3.6).

3.7.4 Complexity of Greedy Algorithm

In this section the time complexity of Greedy Algorithm is analyzed for all the
possible combinations histogram type, adopted greedy criterion and adoption
of either the sparse or non-sparse model or pre-computation.

Table 3.4. Complexity bounds of Greedy Algorithm

Theorem 3.2 Given a d-dimensional data distribution D with volume nd

containing exactly N non-null points, the time complexity of the greedy algo-
rithms computing a histogram of type T (where T is either FBH, HBH or k-
GHBH) on D, adopting either the non-sparse data model or pre-computation,
are reported in Table 3.4, where α = n if Max-Varmarg/Max-Redmarg crite-
rion is adopted, and α = k for all the other greedy criteria.

4 Formally a point x = 〈x1, . . . , xd〉 belonging to the block b = 〈ρ1, . . . , ρd〉 is said
to be a vertex of b if for each i ∈ [1..d] xi is either lb(ρi) or ub(ρi).



3.7 Greedy algorithms for histogram construction 89

Proof. Complexity bounds when pre-computation is not used were obtained
by multiplying the maximum number of iterations of Greedy Algorithm (which
are O(βmax

T )) for the cost of each iteration. The cost of each iteration of Greedy
Algorithm is dominated by the cost of evaluating the greedy criterion G on
a bucket b, that is by the cost of computing Evaluate(G, b) (which has been
computed in Section 3.7.1 for FBH and HBH, and in Section 3.7.2 for GHBH).
In the case that pre-computation of F and F 2 is performed, the cost of Greedy
Algorithm is given by the sum of three contributions:

1. PreComp: the cost of pre-computing F and F 2;
2. CU : the cost of all the updates to the priority queue;
3. CE : the cost of computing the function Evaluate for all the nodes to be

inserted in the queue.

These contributions can be computed as follows:

1. Both F and F 2 can be constructed “incrementally”, by accessing only once
each cell of the multi-dimensional array corresponding to D and accessing
2d − 1 cells of F and F 2 computed at the previous steps. For instance, in
the two dimensional case:
F [〈i, j〉] = D[〈i, j〉]+F [〈i−1, j〉]+F [〈i, j−1〉]−F [〈i−1, j−1〉], and F 2[〈i, j〉] =

(D[〈i, j〉])2 + F 2[〈i − 1, j〉] + F 2[〈i, j − 1〉] − F 2[〈i − 1, j − 1〉].
These formulas con be easily generalized to the multi-dimensional case, so
that the cost of computing F and F 2 is given by: PreComp = O(2d ·nd).

2. As to term CU , at each iteration of the algorithm the first element of
the priority queue is extracted and two new elements are inserted. The
cost of either top-extraction and insertion is logarithmic w.r.t. the size
of the queue, which is in turn bounded by the number of buckets of the
output histogram. On the other hand, the number of iterations of Greedy
Algorithm is equal to the number of buckets it produces. Thus, denoting
as β the number of buckets of the histogram produced by the greedy
algorithm, the overall cost CU of the updates to the priority queue is
O(β · log(β)).

3. Let C(Evaluate(G, b)) denote the cost of computing function Evaluate on
the block b w.r.t. the greedy criterion G; moreover the binary histogram
produced by Greedy Algorithm is denoted by H. Thus the term CE is
given by

∑
b∈Nodes(H) C(Evaluate(G, b)).

As shown in Section 3.7.3, the SSE of a block and the reduction of SSE due to
a split can be evaluated accessing 2d elements of F and 2d elements of F 2, in-
stead of accessing all the elements of the block (see formulas (3.6) and (3.4)).
Clearly, also the reduction of SSE(margdim(b)) due to the split of b along
any point on dim can be computed in O(2d), as it can be derived from the re-
duction of SSE(b) due to the same split (see formula (3.5)). On the contrary,
evaluating SSE(margdim(b)) requires the computation and scanning of the
marginal distribution of b along dim, which, using the array of partial sums
F , can be done in O(2d · n). Therefore, for all the proposed greedy criteria G



90 3 Hierarchical Binary Histograms

but Max-Varmarg/ Max-Redmarg, C(Evaluate(G, b)) = O(2d · η), where η is
the number of reductions of SSE or marginal SSE which have to be computed.
In particular, η = d · n for FBH and HBH, whereas η = d · k for k-GHBH.
In the case that Max-Varmarg/ Max-Redmarg is adopted, the cost of comput-
ing the d marginal SSEs of the block is O(2d · d ·n) for either FBH, HBH and
k-GHBH, and dominates the cost of computing the reductions of marginal
SSE.
To sum up, when pre-computation is adopted, C(Evaluate(G, b)) is O(2d ·d·n)
for FBH and HBH, and C(Evaluate(G, b)) is O(2d ·d ·α) for k-GHBH (where
α = k for all the greedy criteria G but Max-Varmarg/ Max-Redmarg, for which
α = n).
Therefore, CE is given by:

1. in the case that T=FBH or HBH,
CE =

∑
b∈Nodes(H) C(Evaluate(G, b)) = O(βmax

T · 2d · d · n)
2. in the case that T=k-GHBH, CE= O(βmax

GHBH · 2d · d · α)

Observe that in the case of FBH and HBH under any greedy criterion, as well
as in the case of k-GHBH under Max-Varmarg/ Max-Redmarg, term CU is
negligible w.r.t. CE . In fact, the number of buckets β is not greater than nd,
which implies log β ≤ d · log n < 2d · d · n. In the case of k-GHBH, when a cri-
terion different from Max-Varmarg/ Max-Redmarg is adopted, it can happen
that the inequalities log β < 2d · d · k do not hold, even though, in practical
cases, the number of buckets rarely exceeds the value 22d·d·k. �

The bounds in Table 3.7.3 assume that all steps of Greedy Algorithm have
the same complexity. Indeed, it is unlikely that this case occurs, since as the
histogram construction goes on, smaller and smaller buckets are generated,
and each of these buckets contain fewer tuples than buckets generated at
previous steps. Therefore it is rather expected that, after the very first steps,
Greedy Algorithm deals with buckets whose volume is much smaller than nd,
whose marginal distributions have size much smaller than n, and containing
fewer tuples than N .

Experimental results comparing the efficiency of the three different ap-
proaches (the ones based on the sparse data model, the non-sparse one, and
pre-computation, respectively) are provided in Section 3.9.8.

3.7.5 Workspace size for Greedy Algorithm

Implementing Greedy Algorithm with the adoption of pre-computation be-
comes unfeasible for high-dimensionality data, due to the explosion of the
spatial complexity: the space needed to store F and F 2 grows exponentially
as dimensionality increases, even if the number of non-null values remains
nearly the same. In real-life scenarios, it often occurs that N � nd, especially
for high-dimensionality data: as dimensionality increases, data become sparser
and the size of the data domain increases much more dramatically w.r.t. the



3.8 Estimating range queries 91

number of non-null data.
On the contrary, Greedy Algorithm under the sparse data model is much
less sensitive on the increase of dimensionality, also from the point of view
of the workspace size. In this case, Greedy Algorithm can be implemented
by associating to each element of the queue not only the boundaries of the
corresponding bucket b, but also the set of tuples belonging to b. Thus, when
a bucket b is chosen and split into blow and bhigh, tuples of b are distributed
among blow and bhigh; then the triplet 〈need, dim, coord〉 associated to the new
bucket blow [resp. bhigh] is computed by scanning only the tuples belonging to
blow [resp. bhigh]. That is, the partition underlying the histogram is used as an
index to locate the tuples contained in the buckets. Therefore, the algorithm
workspace (i.e. the storage space needed to store q) is O(d · N) (instead of
O(nd), as in the case of pre-computation), since each non null point belongs
to exactly one bucket of the partition at each step of the algorithm.

The complexity bounds reported in Table 3.4 show that Greedy Algorithm
works in linear time w.r.t. both the number of non-null points inside D and
the size of the dimensions of D. Notice that, as these bounds hold for all
the considered greedy criteria, the idea of working on the one-dimensional
marginal distributions of blocks does not provide a relevant benefit on the
efficiency of the histogram construction w.r.t. investigating the actual multi-
dimensional distributions of blocks in the greedy criterion.

3.8 Estimating range queries

As explained above, the adoption of the compressed tree-based representation
model of HBH and GHBH enables a larger number of buckets to be stored
within the same storage space bound w.r.t. the flat representation model of
FBH. Intuitively enough, this is likely to slow down the evaluation of selec-
tivity estimation on either HBH and GHBH w.r.t. FBH, due to the larger
amount of information which is represented in the former two classes of his-
togram. However, In order to study in more detail the impact of the hierar-
chical representation on the efficiency of estimating queries, it is first shown
how queries are estimated on HBH and GHBH.

Let q be a query defined on the range r, and Sum(r) be the range-sum
query asking for the selectivity of q. Basically Sum(r) is estimated by navi-
gating the partition tree of the histogram and summing the contributions of
the nodes which overlap the query range. The visit starts from the root, which
corresponds to the whole data domain. When a node u is being visited, three
cases may occur:

1. the range corresponding to u is external to r: no contribution to the esti-
mate is given by u;

2. the range corresponding to u is entirely contained into r: the contribution
of u is Sum(u), i.e. the sum associated with u;



92 3 Hierarchical Binary Histograms

3. the range corresponding to u partially overlaps r: if u is a leaf, linear inter-
polation is performed for evaluating which portion of the sum associated
to the node lies onto r. If Vol(u) denotes the volume of the range corre-
sponding to u and Vol(r ∩ u) the volume of the intersection between r
and the range of u, then the contribution of u to the query estimate is:
Vol(r ∩ u)

Vol(u)
·Sum(u). Otherwise, if u is not a leaf, the contribution of u is the

sum of the contributions of its children, which are recursively evaluated.

The volume of the range corresponding to each node is evaluated on the
basis of the boundaries associated with the node. These boundaries are com-
puted during the navigation, according to the splitting position stored in the
representation of the parent node.

According to the linearized representation of the binary partition adopted
in this approach, the encoding of each node u in ArrayP is followed by the
encoding of the whole tree rooted at its left-hand child node uleft. Therefore,
while the tree rooted at uleft can be directly accessed from u, linearization
results in no mechanism for navigating directly from a node u to its right-
hand side child node uright. This implies that in order to access uright starting
from u, the bit string corresponding to uleft must be skipped. As the length of
the encoding of the sub-tree rooted at uleft is not fixed (since it depends on the
depth of the sub-tree), it is necessary to scan the encoding of this sub-tree in
order to reach the position in ArrayP where the encoding of uright starts from.
However, scanning the representation of the sub-tree rooted at uleft results in
an overhead only if uleft does not contain any node overlapping the query
range (otherwise, it should be scanned in order to compute its contribution
to the query estimate anyhow). Indeed, even if this is the case, the cost of
accomplishing this scanning is unlikely to slow down the query estimation
time significantly. In fact, the tree rooted at uleft can be rapidly scanned by
accessing only the bits encoding its structure, that is the bits saying whether
the corresponding nodes are leaves or not. Consider two nodes u1, u2 such that
u2 immediately follows u1 according to the prefix visit of the partition tree.
Then the distance between the encodings of u1 and u2 is exactly the length
of the bit encoding of u1. This length is a constant depending on whether u1

is a leaf or an intermediate node. That is, if u1 is a leaf this distance can be
either 1 or 2: it is 1 if u1 is the right-hand child of its parent node, whereas it
is 2 if u1 is the left-hand child of its parent node (see nodes D.1 and D.2 in
Fig. 3.6). Otherwise, if u1 is an intermediate node, the distance between the
starting points of the encodings of u1 and u2 in ArrayP is equal to the length
of the encoding of the splitting position and the splitting dimension of u1 (i.e.
�log2 d�+ 32 for HBH, and �log2 d�+ log2 k for GHBH). Therefore, when the
tree rooted at uleft does not overlap the query range, its encoding is scanned
by skipping the fragments of ArrayP encoding the splitting positions and the
splitting dimensions of its nodes. The bits encoding the splitting position of
nodes must be unpacked only for those nodes giving a non-null contribution to



3.8 Estimating range queries 93

the query estimate, that is those nodes belonging to branches of the partition
tree overlapping the query range.

Therefore a histogram of type HBH or GHBH can be navigated by rapidly
scanning the branches of the partition tree corresponding to portions of the
data domain which are not involved in the query, and executing the complete
unpacking of node boundaries only for those branches overlapping the query
range. Moreover, observe that storing the sums at intermediate nodes of the
tree further enhances the efficiency of the estimation: if the range of an in-
termediate node u is completely contained inside the range of the query, the
estimated answer is increased by the sum associated with node, and the tree
rooted at u is rapidly scanned, without decoding the boundaries of the nodes
descending from u and without accessing their sums.

As regards FBH, its flat representation model does not provide any mecha-
nism for efficiently locating the buckets involved in the query. Thus estimating
Sum(r) requires accessing all the buckets of the histogram to check whether
they overlap r. In order to check whether a bucket b overlaps r it is necessary
to comute O(d) intersections: first it is checked whether b intersects r along
dimension 1; if this is the case, the same verifying is accomplished for dimen-
sion 2, and so on, until a dimension where b and r do not overlap is found,
or all dimensions have been checked. Therefore O(b · d) intersections between
one-dimensional ranges should be computed to determine the list of buckets
giving non null-contribution to the query answer.

Observe that for either HBH and GHBH the number of one-dimensional
intersections which must be computed to locate the buckets involved in the
query is less than the latter amount (for the same value of b). In fact for each
intermediate node visited in the partition tree at most one 1-dimensional
intersection must be accomplished, according to the splitting dimension and
the splitting position stored in the node representation. Thus the number of
intersections to be performed is at most b (as the number of intermediate
nodes is the same as the number of leaves). Moreover, the value b is an upper
bound: as explained above, intersections must be computed only for those
branches descending from nodes overlapping the query range.

The above-reported reasoning does not suffice to state that accomplishing
query estimates on HBH and GHBH is more efficient than the case of FBH,
as the number of buckets stored by HBH and GHBH is larger than that of
FBH within the same storage space bound (as explained in Section 3.5). More-
over the cost of the bit-wise decoding of the tree structure should be taken
into account. The relevance of this overhead in a practical setting cannot
be measured but experimentally. Section 3.9.7 provides several experiments
comparing the efficiency of answering queries when the FBH flat representa-
tion model and the GHBH hierarchical representation model are employed,
respectively. Overall, experimental results show that adopting the compressed
hierarchical representation model results in better accuracy and efficiency of
query answering.



94 3 Hierarchical Binary Histograms

3.9 Experimental analysis

In this section a thorough experimental analysis investigating several issues
related to the performances, in terms of accuracy and efficiency, provided by
histograms based on binary partitions is presented. The attention will be fo-
cused on different issues, in order to study progressively the impact on the
histogram accuracy of the following contributions: the specific tree-based rep-
resentation model of HBH, the grid-constrained partition scheme of GHBH,
and the heuristics used to accomplish the construction of the histogram. Fi-
nally the efficiency of query evaluation using the compressed representation
model will be studied, comparing it with the FBH representation model.

The experiments were conducted on both synthetic and real-life data. In
the following two sections the synthetic data generator and the real-life data
sets used to perform experiments are described.

3.9.1 Synthetic data

The adopted synthetic data generator is similar to those of [45] and [128]. It
takes as argument the following parameters: n1, . . . , nd, T ,m, lmin, lmax, zmin,
zmax. Data are generated by creating m dense regions inside a d-dimensional
array D with volume n1 × · · · × nd. These dense regions will be denoted as
r1, . . . , rm. Each ri is characterized by its center ci, its width li and the skew
parameter zi (as it will be clear later, zi determines the data distribution
inside ri). The coordinates of the centers c1, . . . , cm are generated according
to a uniform distribution on the domain of D; the widths l1, . . . , lm are ran-
domly chosen between lmin and lmax, and z1, . . . , zm are randomly chosen
between zmin and zmax (in the experiments, where it is not differently stated,
zmin = 0.5 and zmax = 2.5). Initially D is empty (i.e. it contains only null
points), and at the end of the generation process it will contain a number of
points whose sum is equal to T . In particular, T is divided into Tnoise and
Treg. The latter is further divided into m portions T1, . . . , Tm according to a
uniform distribution. Each Ti represents the sum of the points inside region
ri. Region ri is populated in two steps:
1. a number Ti of points inside the range of ri (namely, p1, . . . , pTi

) are gen-
erated. Each of these points pj is obtained by first generating its distance δj
from the center ci and then randomly choosing pj among the points having
this distance from ci. The value of δj is chosen according to a Zipf distribution
on [0..li] with parameter zi.
2. for each pj (with j ∈ [1..Ti]) the value of D[pj ] is increased by one. Thus,
each cell p in ri will contain the number of occurrences of p in the sequence
p1, . . . , pTi

.
As regards Tnoise, it is used to simulate noise in the data distribution: it

is distributed among randomly generated points inside D (in the experiments
Tnoise = 0.05 · T ).



3.9 Experimental analysis 95

This generation paradigm results in a data distribution where, for each
ri, the higher zi, the more “concentrated” around ci the data points: as zi

increases, points having large distances from ci are less probable to be gener-
ated.

As explained in [45] and [128], data-sets generated by using this strategy
well represent many classes of real-life distributions.

3.9.2 Real life data

Experiments on two real-life data sets were performed. The first data set will
be referred to as Census and was obtained from the U.S. Census Bureau
using their DataFerret application for retrieving data. The data source is
the Current Population Survey (CPS), from which the March Questionnaire
Supplement (1994) file, containing 150 943 tuples, was extracted. 8 attributes
have been chosen:

Age, Parent’s line number, Major Occupation, Marital Status, Race, Fam-
ily Type, Public Assistance Type, School Enrollment. The corresponding 8-
dimensional array has about 4.6 ·107 cells, and contains 19129 non-null values
(the density is about 4.2 · 10−4).

The other data set will be referred to as Forest Cover. It was obtained
from the U.S. Forest Service and is available at the UCI KDD archive site. It
consists of 581 012 tuples having 54 attributes. Among these, 10 attributes are
numerical. As in [56, 57], the tuples projected on these numerical attributes
are considered, thus obtaining a 10-dimensional data distribution. The corre-
sponding 10-dimensional array has about 4.4 · 1028 cells (the density is about
1.3 · 10−23).

3.9.3 Experimental plan

Given a data distribution D, let r be a range inside the domain of D. Sum(r)
will denote the range-sum query asking for the sum of values stored in the cells
of D inside r. In the experiments D represents a frequency joint distribution,
thus the value of Sum(r) represents the selectivity of a query defined on the
range r. Let Sum ′(r) the estimate of Sum(r) evaluated on the histogram. The
absolute error of the estimate is defined as: eabs = |Sum(r) − Sum ′(r)|. The
relative error is defined as: erel = eabs

Sum(r) . Observe that relative error is not
defined when Si = 0. Indeed, for queries with very low exact answer, the
absolute error of the estimate gives a better idea of the estimate accuracy
than the relative error.

The accuracy of the various techniques was evaluated by measuring the
absolute error and the relative error of the estimates of range-sum queries
computed by accessing the histogram. The impact of a number of parameters
on the accuracy was considered: the amount of storage space used to represent
the histogram, the selectivity of queries, as well as several characteristics of



96 3 Hierarchical Binary Histograms

the input data (such as dimensionality and domain size). The sensitivity to
each of these parameters was analyzed by varying it and fixing the other ones.
In particular, in order to generate groups of queries with the same selectivity
on a data distribution D, the following strategy was used. First, a number of
distinct points were randomly selected inside D. Then, for each of these points
p, a set of queries was generated starting from the query whose range coincided
with p and by progressively enlarging the query volume. This resulted in
queries centered in p with increasing selectivity. Finally, such obtained queries
were grouped by their selectivity.

The following sections are organized as follows.
First, in Section 3.9.4 the impact of adopting different greedy criteria under

different representation models is studied. To this aim, FBH and HBH are
compared, when all greedy criteria of Table 3.3 are used, in order to establish
which combination yields the best accuracy. In this section a 4-dimensional
synthetic data is used, with volume 400×400×400×400 containing one million
tuples distributed among 30 dense regions. All the greedy criteria combined
with the two different representation models on the Forest Cover data-set are
also compared.

Then, in Section 3.9.5 the impact due to the grid-partitioning by compar-
ing HBH and GHBH is investigated. This analysis will show that the best
performances among all different combinations type of histogram/greedy cri-
terion is provided by histograms of type GHBH constructed by adopting Max-
Var/Max-Red. Moreover, the sensitivity of the accuracy provided by GHBH
w.r.t. different characteristics of the data distribution, such as the size of di-
mensions and the data skewness for different data dimensionality, is studied.

In Section 3.9.6 the accuracy provided by GHBH using Max-Var/Max-Red
with the state of the art is compared. In particular, experiments studying how
the accuracy of the various techniques is affected by data dimensionality are
presented.

Section 3.9.7 provides experiments testing the impact of the adoption of
the compression-based representation model of GHBH on the efficiency of
estimating queries.

Finally, in Section 3.9.8 experiments showing the construction time of the
histogram are presented. These experiments aims at comparing the practical
efficiency of the histogram construction when either sparse or non-sparse data
model, or pre-computation is adopted.

3.9.4 Comparing FBH and HBH under different greedy criteria

As explained in Section 3.3, the tree-based representation models of HBH and
GHBH are an alternative to theMBR-based one of FBH. On the one hand, the
tree-based representation model yields a larger number of buckets w.r.t. the
MBR-based one (within the same storage space bound); on the other hand,
buckets represented by means of their MBRs are likely to provide a more
accurate description of the underlying data distribution. Therefore it is worth



3.9 Experimental analysis 97

investigating which of these alternatives yields the best accuracy and, in more
detail5. Therefore it was studied how the accuracy provided by the different
representation models of FBH, HBH, GHBH depends on the particular greedy
criterion adopted to guide the histogram construction.

In order to establish how using different greedy criteria and employing dif-
ferent representation models affect the histogram effectiveness, the accuracy
of histograms obtained using different combinations greedy criterion / repre-
sentation model was studied. In particular, this section provides experimental
results studying how error rates change when the same greedy criterion is
used with either the flat representation model of FBH and the tree-based
representation model of HBH. The impact of the use of the grid-constrained
partitioning of GHBH will be considered in more detail in the following sec-
tion.

Observe that the combinations Max-Redmarg/FBH and MaxDiff /FBH co-
incide with the techniques Min-Skew and MHIST, respectively. However, the
aim of this section is not to provide a complete comparison between the new
compression approach and these well-known techniques: further experiments
comparing the new approach with Min-Skew and MHIST will be reported in
Section 3.9.6.

Diagrams in Fig. 3.10 (a,b) were obtained on a synthetic 4-dimensional
data distribution with volume 400 × 400 × 400 × 400 containing one million
tuples distributed among 30 dense regions (with lmin = 30 and lmax = 80),
whereas diagrams in Fig. 3.10(c,d) were obtained on the 10-dimensional Forest
Cover data set. The accuracy of the various criteria is evaluated w.r.t. the
storage space available for the compressed representation.

The main results which turn out from diagrams in Fig. 3.10 are the fol-
lowing:

1. for both FBH and HBH, Max-Var/Max-Red provides lower error rates
than all other criteria; moreover, this criterion exploits the amount of
storage space more effectively: as the available storage space increases,
error rates decrease more rapidly w.r.t. the other criteria;

2. the accuracy of histograms built by employing any criterion other than
Max-Var/Max-Red and Max-Red is nearly the same when either the FBH
orHBH representation model is adopted. On the contrary, histograms con-
structed adopting either Max-Var/Max-Red or, to a lesser extent, Max-
Red benefit from the use of the HBH representation model.

The main result is that greedy criteria behave differently depending on
whether the FBH representation model is used or not; interestingly, some
greedy criteria benefit from the adoption of this model, whereas other criteria
yield lower error rates when the tree-based representation model of HBH is

5 Obviously, only FBH adopting MBRs to represent the leaves of the partition tree
will be considered: otherwise, the comparison of FBH with HBH and GHBH (in
terms of accuracy) is rather expected.



98 3 Hierarchical Binary Histograms

�
Max-Var/Max-Red

�
MaxRed

�
Max-VarmargMax-Redmarg



Max-Redmarg

�
MaxDiff

Selectivity = 0.5 % Selectivity = 0.5 %
120

90

60

30

400020001000500

Storage space (n. of words)

�

�
�

�

�
� � �

�
�

�
�


 
 
 

� � � �

120

90

60

30

400020001000500

Storage space (n. of words)

� �
�

�

� �
�

�
� �

�
�


 
 
 


�
� �

�

HBH FBH
(a) (b)

Selectivity = 0.1 % Selectivity = 0.1 %

80

60

40

20

8000400020001000

Storage space (n. of words)

�
�

�

�

� � � �

� � � �

 
 
 
� � � �

80

60

40

20

8000400020001000

Storage space (n. of words)

�

�
�

�

� � � �� � � �

 
 
 
� � � �

HBH FBH
(c) (d)

Fig. 3.10. Comparing combinations greedy criterion / representation model on 4D-
synthetic data (a,b) and Forest Cover (c,d)

adopted.
For both FBH and HBH, Max-Var/Max-Red provides lower error rates than
all other criteria, but its accuracy is higher under the tree-based representation
model. Moreover, this criterion exploits the amount of storage space more
effectively: as the available storage space increases, error rates decrease more
rapidly w.r.t. the other criteria.

In order to explain why employing different greedy criteria results in differ-
ent error rates, a two-dimensional data distribution was considered and it was
studied how data is partitioned depending on the adopted criterion for both
HBH and FBH. Partitions resulting from different combinations greedy crite-
rion / representation model are depicted in Fig. 3.11. In order to explain why
different combinations greedy criterion / representation model result in differ-
ent error rates, let consider a two-dimensional data distribution and study how
data is partitioned depending on the adopted combination. Indeed this is not
exhaustive, since error rates in higher dimensionality settings depend also on



3.9 Experimental analysis 99

Max-Red (HBH) Max-Redmarg
(HBH) MaxDiff (HBH) Max-Var/Max-Red (HBH)

(a) (b) (c) (d)

Max-Red (FBH) Max-Redmarg
(FBH) MaxDiff (FBH) Max-Var/Max-Red (FBH)

(e) (f) (g) (h)

Fig. 3.11. Partitions resulting from different combinations greedy criterion / rep-
resentation model

issues which do not significantly affect the accuracy in the two-dimensional
scenario (for instance, Max-Var/Max-Red and Max-Varmarg /Max-Redmarg

yield about the same accuracy in the 2D scenario, but significantly differ from
one another on higher dimensionality data).
By analyzing diagrams in Fig. 3.11, the following considerations can be drawn:
- Max-Red fails in building effective partitions, as it tends to progressively

split “small” dense regions. This is made clear in Fig. 3.11(a) and (e): some
clusters of data are rather disregarded, even if the amount of storage space
would suffice to perform enough splits to isolate them; indeed, many splits
are “wasted” to partition the core of other dense regions. This behavior can
be explained by analyzing Equation 3.4 which expresses the reduction of
SSE of a block b due to the binary split 〈bl, bh〉. From that formula, it turns
out that splitting a small dense block b1 can result in a larger reduction of
SSE w.r.t. splitting a larger block b2, even if SSE(b2) � SSE(b1) 6. The use
of MBRs does not improve error rates of Max-Red. In fact, on the one hand
MBRs do not prevent the criterion from generating several small buckets in
a few dense regions. On the other hand, the use of MBR reduces the number

6 As a hint, consider two buckets b1, b2 with vol(b1) 
 vol(b2) containing the
same data values distributed differently. Then SSE(b2) � SSE(b1) holds, but
the reduction of SSE due to any binary split 〈bl

1, b
h
1 〉 of b1 is likely to be larger

w.r.t. any binary split 〈bl
2, b

h
2 〉 of b2.



100 3 Hierarchical Binary Histograms

of splits, so that a larger number of dense regions are likely to be disregarded
by the partition;

- the behavior of Max-Redmarg can be explained as for Max-Red. In this case,
the criterion tends to choose blocks having small size along one of their di-
mensions, and split them along this dimension, as this yields the maximum
reduction of (marginal) SSE. This explains the shape of the partitions gen-
erated by Max-Redmarg shown in Fig. 3.11(b) and (f), where rectangular
blocks are split along their smallest dimension, and the obtained blocks are
recursively split along the same dimension. Differently from Max-Red, crite-
rion Max-Redmarg can provide better performances (in terms of accuracy)
when MBRs are used. In fact, Max-Redmarg performs several parallel splits
making some dimensions of blocks to be never partitioned (for instance, in
Fig. 3.11(b) several buckets are obtained by never splitting the horizontal
dimension of the data domain). This results in blocks putting together dense
regions with null ones, and these regions are never separated from one an-
other, as a split along the largest edge of blocks would be necessary. In this
case MBRs can improve the accuracy of the partition, as they fit the shape
of buckets on the underlying distribution, thus isolating dense regions from
null ones. Moreover, for the same reason, the adoption of MBR can reduce
the differences in length between the edges of each block, thus limiting the
number of parallel splits performed recursively on the same block.

- MaxDiff generally yields higher accuracy when MBRs are employed. How-
ever error rates are not satisfactory in both cases. As shown in Fig. 3.11(c)
and (g), adopting MaxDiff results in partitions which poorly describe the
underlying data, as this criterion is unable to separate dense regions from
null ones. In fact there is no reason to assume that largest differences in
marginal values arise correspondingly to the boundaries of dense regions.

- Max-Var/Max-Red succeeds in locating dense regions where a finer-grain
partition of data is needed: as shown in Fig. 3.11(d) and (h) this criterion is
fairer in choosing the region to be split w.r.t. Max-Red, Max-Redmarg , and
MaxDiff. This explains why it outperforms all the other criteria for both
HBH and FBH.

In Fig. 3.11 the partition obtained with Max-Varmarg/Max-Redmarg is
not shown, as it was very similar to that of Max-Var/Max-Red. Indeed dif-
ferences in error rates between these two criteria arise more significantly in
higher dimensionality settings. As dimensionality increases, marginal distri-
butions contain less and less information on the internal content of blocks:
in fact, the total size of marginal distributions of a block (i.e. the sum of
the lengths of all marginal distributions of the block) grows linearly with d
(it is O(d · n)), whereas the volume of blocks grows exponentially with d (it
is O(nd)). Therefore, investigating the content of marginal distributions to
decide whether a block needs to be partitioned is likely to provide less re-
liable information as dimensionality increases. As a matter of fact, isolated
dense regions of the multi-dimensional space can collapse into a single mono-



3.9 Experimental analysis 101

dimensional dense region, when projected on each dimension (for instance,
consider two adjacent circular dense regions located at the ends of a diagonal
in the two-dimensional space). Therefore, it is unlikely to succeed in isolating
the dense multi-dimensional regions by only looking at their projections (i.e.
the marginal distributions) on space dimensions.

The attention is now focused on explaining why only Max-Var/Max-Red
and Max-Red benefits from the adoption of HBH representation model. As
regards Max-Var/Max-Red, the reason for this is that MBRs do not help this
criterion in isolating dense regions from null ones: therefore, Max-Var/Max-
Red can exploit significantly the increase in number of buckets due to the
HBH representation model, investing a larger number of buckets to approxi-
mate dense regions in more detail (in fact, error rates for Max-Var/Max-Red
are very sensitive to an increase in storage space, as shown in diagrams in
Fig. 3.10). As regards Max-Red, on the one hand MBRs do not prevent this
criterion from generating several small buckets in a few dense regions. On the
other hand, the use of MBR reduces the number of splits, so that a larger
number of dense regions are likely to be disregarded by this criterion (for in-
stance, the dense region at the bottom right-hand part of the data distribution
in Fig. 3.11(e) is not partitioned when MBRs are used).

On the contrary, all other criteria are not effective in assigning distinct
dense regions to distinct buckets: in this case, MBRs do provide a more ac-
curate description of the data underlying buckets, but this positive benefit of
FBH representation model turns out to be counterbalanced by the smaller
number of buckets w.r.t. the HBH representation model.

Remark. In [35] a different version of MHIST consisting in adopting a
partition-tree-based representation scheme instead of MBRs was proposed.
This basically consists in combining the Max-Diff criterion with the HBH
representation model. As it emerges from experiments, that naif adoption of
a tree-based representation scheme is not likely to achieve significant benefits
w.r.t. the original MHIST, which combines the Max-Diff criterion with the
FBHrepresentation model.

Due to the higher level of accuracy provided by Max-Var/Max-Red under
the tree-based representation model, and since this criterion can be evaluated
as efficiently as the other ones (as stated in Theorem 3.2), in the following
only HBH using this criterion will be considered.

3.9.5 Comparing HBH with GHBH

In this section it is studied how the introduction of a grid constraining block
splits affects the accuracy of histograms. GHBH and HBH are first compared
under the same greedy criterion (thus Max-Var/Max-Red is adopted, under



102 3 Hierarchical Binary Histograms

which HBH yields the best accuracy), then the impact of adopting different
greedy criteria to guide the construction of a GHBHis briefly discussed.

HBH vs GHBH under Max-Var/Max-Red

Histograms of type GHBH with different grid degrees have been tested. In the
following, the term GHBH(x) will be used to denote a GHBH which employs
x bits to store the splitting position.



GHBH(0)

�
GHBH(3)

�

GHBH(6)
�

HBH

Selectivity= 0.5 % Selectivity= 3 %
75

50

25

0

400020001000500

Storage space (n. of words)











�

�
�

�

�

�

�

�

�

�

�

�

45

30

15

0

400020001000500

Storage space (n. of words)











�

�
�

�

�

�

�
�

�

�

�

�

(a) (b)

Selectivity= 0.5 % Selectivity= 3 %
150

100

50

0

400020001000500

Storage space (n. of words)











�

�

�
�

�

�

�
�

�

�

�

�

20

13

6

0

400020001000500

Storage space (n. of words)












�

�

�
�

�

�

�
�

�

�

�

�

(c) (d)

Fig. 3.12. HBH vs GHBH on 4D-synthetic data (a,b) and real-life data (c,d)

Diagrams in Fig. 3.12 (a,b) were obtained on the same 4-dimensional syn-
thetic data distribution as Fig. 3.10, whereas diagrams in Fig. 3.12 (c,d) were
obtained on Census data set by performing samples of queries whose selectiv-
ity is respectively 0.5% and 3%.

From diagrams in Fig. 3.12 it emerges that GHBH yields higher accuracy
than HBH. Although the HBH algorithm is able to perform more effective
splits at each step (as splits are not constrained by the grid), the number of
buckets generated by GHBH algorithms is larger.



3.9 Experimental analysis 103



GHBH(0)

�
GHBH(3)

�

GHBH(6)
�

HBH

d=3; Query Vol. = 203 d=6; Query Vol. = 206

20

10

1600800400200

Edge size


 
 
 


� � � �� � � �

� �
� �

20

10

1600800400200

Edge size







 


� �
� �� � �

�

�
� � �

(a) (b)

d=3; Query Vol. = 203 d=6; Query Vol. = 206

55

30

5

3210

z


 







�

�

�

�

�

�

�

�

�

�

�

�

55

35

15

3210

z












�

�

�
�

�

�

�

�

�

�

�

�

(c) (d)

Fig. 3.13. Error rates of HBH and GHBH versus length of dimensions (a,b) and
data skewness (c,d)

In order to investigate in more detail how the optimal grid degree de-
pends on the characteristics of data, experiments studying how the accuracy
of GHBHs adopting grids with different degrees is affected by either the size
of the domain and the data skewness were performed. As regards the former
issue, intuition would suggest that, as the volume of data increases, in order
to keep the same accuracy in partitioning data, a higher-degree grid should be
adopted. To analyze this aspect, some experiments investigating how changing
the grid degree affects the effectiveness of isolating dense regions distributed
on larger and larger domains were performed.

To this aim, GHBHs with different grid-degrees on data distributions hav-
ing the same dimensionality were tested, increasing volume, and containing the
same dense regions differently distributed in the data domain. Diagram 3.13(a)
depicts error rates on 3-dimensional cubic data sets with increasing lengths of
dimensions, from 200 to 1600. These data sets will be denoted as Dn, where
n is the length of each dimension. D200, . . . , D1600 were generated by first
creating 30 dense regions, and then distributing randomly the centers of these
regions in the different data domains. For instance, each dense region ri (with



104 3 Hierarchical Binary Histograms

i ∈ [1..30]) inside D400 contains the same distribution of values as the region
r′i inside D200, but the center ci of ri has different coordinates w.r.t. the cen-
ter c′i of r′i (ci and c′i being randomly selected points inside D400 and D200,
respectively.). For each data set Dn a query set QSn is generated as follows.
QS200 contains, for each dense region ri of D200, 1000 hypercubic queries in-
tersecting ri. The centers of these queries are characterized by their relative
coordinates to ci. QS400 contains, for each q ∈ QS200 involving ri, a query
q′ involving r′i with the same volume as q, and whose center has the same
relative coordinates to c′i as q does to ci. Query sets QS800, QS1600 have been
constructed analogously. Evaluating error rates w.r.t. these query sets allows
us to establish whether the optimal grid degree for a GHBH depends on the
domain size. Diagram 3.13(b) was obtained analogously, but for 6-dimensional
data.

Diagrams in Fig. 3.13(a,b) show that the effectiveness of adopting a par-
ticular grid degree is almost unaffected by the size of the domain.

Diagrams in Fig. 3.13(c,d) show how error rates depend on data skewness.
Diagram in Fig. 3.13(c) depicts error rates for 3-dimensional data distributions
with volume 400× 400× 400 having 30 dense regions (having the same value
z of the skew parameter), whereas diagram in Fig. 3.13(d) was obtained on
6-dimensional data distributions with volume 4006 with 30 dense regions.
As for diagrams 3.13(a,b) a query set consisting of queries with the same
volume overlapping dense regions was considered. Observe that data density
decreases as skewness increases: as z gets larger, dense regions become sparser,
since tuples are generated with a decreasing probability of being far from the
center of the region. That is, when z = 0 the distances of generated tuples
from the center are uniformly distributed, while as z becomes larger, large
distances from the center become less and less probable. Going to the limit,
dense regions collapse to a unique cell.

From diagrams in Fig. 3.13(c,d) it turns out that “intermediate” values of
z yield the largest error rates. Indeed, if skew is either very low or very high,
dense regions will be rather uniform, or collapse, respectively. In both cases,
isolating the dense region into a few buckets suffices to have good accuracy,
whereas for intermediate values of z dense regions need more and more splits
to be accurately described by the partition.

From these results, it is possible to draw the conclusion that the use of
constraints on the splitting position provides an effective trade-off between
the accuracy of splits and the number of splits which can be generated within
a given storage space bound. The effectiveness of this trade-off depends on
the degree of the allowed binary splits. In fact, when a high degree is adopted,
a single split can be very “effective” in partitioning a block, in the sense
that it can produce a pair of blocks which are more homogeneous w.r.t. the
case that the splitting position is constrained to be laid onto a coarser grid.
On the other hand, the higher the degree of splits, the larger the amount of
storage space needed to represent each split. From the experimental results,
it emerges that GHBH(3) (using binary splits of degree 8) generally gives the



3.9 Experimental analysis 105

best performances in terms of accuracy, and as the number of bits used to
define the grid increases, the accuracy decreases. However, GHBHs with small
degree values do not exhibit large differences in error rates. Therefore, even
if a value for the grid degree yielding the best accuracy in any setting cannot
be found, this is not a limit of the approach, as any low-degree grid provides
error rates which are close to those of the “optimal” degree. In the rest of
the paper, all results on GHBH will be presented by using 3 bits for storing
splitting positions.

HBH vs GHBH under different greedy criteria

It is worth noting that the improvement of HBH accuracy obtained by intro-
ducing the grid constraint is not simply orthogonal to any greedy criterion of
Table 3.3. Although the benefits of using grids only when Max-Var/Max-Red
is used were discussed, from several experiments it turned out that, in the
case that another greedy criterion is adopted, the improvement in accuracy
when moving from HBH to GHBH is not so relevant. This result is rather
expected, and related diagrams are not reported. In fact, it is worth noting
that Max-Var/Max-Red is the only criterion which improves significantly as
the available storage space becomes larger (see Fig. 3.10), whereas the other
criteria are less sensitive to this parameter.

Therefore, it is unlikely that the other criteria exploit the increase of the
number of available splits due to the introduction of grids as Max-Var/Max-
Red does. Therefore in the following only GHBH adopting Max-Var/Max-Red
will be considered.

3.9.6 GHBH versus other techniques

The effectiveness of GHBH is compared with the state-of-the-art techniques
for compressing multi-dimensional data. GHBH was compared with MHIST
[111], Min-Skew [3], GENHIST [56, 57] and two wavelet-based techniques pro-
posed in [127] and [128]. The experiments were conducted at the same storage
space.
We have considered the two wavelet-based techniques presented in [128] (that
will be referred as WAVE1) and in [127] (WAVE2). The former applies the
wavelet transform directly on the source data, whereas the latter performs a
pre-computation step. First, it generates the partial sum data array of the
source data, and replaces each of its cells with its natural logarithm. Then,
the wavelet compression process is applied to this array.

Diagrams of Fig. 3.14 were obtained on four-dimensional synthetic data
with volume 8 × 16 × 256 × 1024, with T = 35 000 having 30 dense regions
(the obtained density is about 0.1%). In particular diagrams (a,b) show how
the accuracy of the techniques changes as the storage space increases, whereas
diagrams (c,d) depict error rates w.r.t. the selectivity of queries.



106 3 Hierarchical Binary Histograms

�
GHBH

�
GenHist

�
MHIST



MinSkew

×
WAVE1

+
WAVE2

Selectivity = 0.5 % Selectivity = 4 %
1000

200

20

3

400020001000500

Storage space (n. of words)

�

�
�

�

� � � �

� � � �
 
 
 

× × × ×
+ + + +

35

10

2

0.5

400020001000500

Storage space (n. of words)

�
�

�
�

� � � �

� � � �
 
 
 

× ×

× ×
+

+
+

+

(a) (b)

Storage space = 1000 words Storage space = 4000 words
200

60

15

3

4210.5

Selectivity %

�

�
� �

�

�
�

�

�
�









×

×
× ×

+

+
+

+

100

20

3

0.5

4210.5

Selectivity %

�

�
�

�

�

�
�

�

�
�



 


×

× × ×

+

+
+

+

(c) (d)

Fig. 3.14. Comparing techniques on synthetic data

GHBH exploits the increase of storage space better than the other tech-
niques. Relative error rates of all techniques increase as query selectivity de-
creases: this can be easily explained by considering that as selectivity decreases
(i.e. query answers become smaller in value) even a small difference between
the actual query answer and the estimated one can lead to a large relative
error.

Diagrams of Fig. 3.15 were obtained on the 10-dimensional Forest Cover
data set. On this data set wavelet techniques were not considered as the
adopted prototype does not support data sets with so large volumes. Diagram
of Fig-3.15(c) refers to very low selectivities and reports absolute errors. In this
case relative errors have not been considered as, for small selectivities, relative
error is likely be high even if a reasonable approximation is obtained: for
instance, while a 300% error rate on a query with selectivity 1 corresponds to a
good accuracy of the estimate, the same error rate on a query whose selectivity
is high (w.r.t. N) makes the inaccuracy of the query estimate intolerable. Thus
relative error may not be indicative of the actual accuracy. In diagram (h)
relative error rates at higher selectivities are reported. The query workload



3.9 Experimental analysis 107

�
GHBH

�
GenHist

�
MHIST



MinSkew

×
WAVE1

+
WAVE2

Selectivity= 0.01 % Selectivity= 0.1 %

160

80

40

20

8000400020001000

Storage space (n. of words)

�
� � �

�
� � �

� � � �


 
 
 
 100

70

30

20

8000400020001000

Storage space (n. of words)

� �
�

�

�
�

�
�

� � � �
 
 
 


(a) (b)

Storage space = 8000 words Storage space = 8000 words
300

125

50

20

9575553515

Selectivity

�
�

�
�

�

�
� �

� �

�
�

� �
�




 
 
 


220

100

50

25

0.10.080.060.040.02

Selectivity %

�
� � � �

�

�
�

� �

�
�

� � �




 
 
 


(c) (d)

Fig. 3.15. Comparing techniques on Forest Cover

for obtaining diagrams (c,d) was constructed by first randomly generating
10 000 query centers in the data domain; then, for each of these centers, queries
with increasing selectivity were generated by progressively enlarging the query
volume, till 0.1% selectivity is reached. Finally, the results on the accuracy
of the answers were grouped by the query selectivity. Observe that queries
having the same selectivity may have very different volumes. In particular, in
the case of Forest Cover Type data set, as data are very sparse, even queries
with very large volumes can have very low selectivity.

Diagrams of Fig. 3.16 were obtained on the 8-dimensional Census data
set. In particular, in this case a broader range of selectivities is considered, as
this data set is less sparse than Forest Cover and thus queries with very low
selectivities are unlikely to occur.

All the diagrams show that GHBH adopting Max-Var/Max-Red outper-
forms the other techniques on all the examined data sets.
Remark. From all the diagrams presented in this section it emerges that
state-of-the-art techniques yield acceptable accuracy only on high selectivity
queries, while excessive error rates (above 100 %) are obtained on low selec-



108 3 Hierarchical Binary Histograms

�
GHBH

�
GenHist

�
MHIST



MinSkew

×
WAVE1

+
WAVE2

Selectivity= 0.2 % Selectivity= 1 %
1250

400

100

25

400020001000500

Storage space (n. of words)

�
�

�

�

�
�

�

�

�
�

�
�


 







× × × ×
+

+
+

400

100

25

5

400020001000500

Storage space (n. of words)

�
�

�

�

�
�

�
�

� �
� �


 






× × × ×

+

+
+

+

(a) (b)

Storage space = 2000 words Storage space = 2000 words
650

250

100

30

10

10.80.60.40.2

Selectivity %

�
�

�
�

�

�

�
�

� �

�
�

�
�

�


 


 





×
×

×
× ×

+

+
+ +

+

150

50

10

3

54321

Selectivity %

�
�

�
� �

�

�

�

�
�

� �

� �

�


 


 





×
× × × ×

+

+ +

+
+

(c) (d)

Fig. 3.16. Comparing techniques on Census

tivity queries. It is worth noting that in some contexts low selectivity queries
are those most “meaningful”. For instance, when data are very sparse, high
selectivity queries are mainly characterized by a very wide range. This is es-
pecially clear in the high-dimensional context. For example, 0.1 % selectivity
range queries on the 10-dimensional Forest Cover Type data set have an aver-
age volume equal to 4 ·1025, which means that, for each dimension, the edge of
the query range has to be about half the size of the data domain. Therefore,
state-of-the-art techniques are not suitable for most of the significant queries
in the high-dimensionality contexts. GHBH, instead, enables acceptable ap-
proximations even when the query selectivity is very low, which is the typical
case, as explained before, occurring when dealing with a large number of di-
mensions. In the following it is investigated in detail how the accuracy of the
various techniques is affected by an increase in dimensionality of the input
data.

Diagrams 3.17(a,b) refer to synthetic data. These diagrams were obtained
by starting from a 10-dimensional data distribution (called D10) containing
1020 cells (the size of each dimension is equal to 100), where about 53000 non



3.9 Experimental analysis 109

�
GHBH

�
GenHist

�
MHIST



MinSkew

×
WAVE1

+
WAVE2

Selectivity 0.1% Selectivity 1%
Storage space 2000 words Storage space 2000 words

400

180

60

20

10864

N. of dimensions

�

� �
�

�
� � �

�

�

� �




 
 
 45

30

15

0

10864

N. of dimensions

�
� � �

� � �
�

�

�

�

�







 


(a) (b)

Selectivity 0.1% Selectivity 1%
Storage space 2000 words Storage space 2000 words

1000

600

300

30

8765

N. of dimensions

� � � �

�

�
� �

�

�
� �




 
 


+
+

+ 150

100

50

5

8765

N. of dimensions

� � � �

�
�

�

�
�

�
� �







 

× × ×

×
+ + +

+

(c) (d)

Fig. 3.17. Sensitivity to dimensionality on synthetic data (a,b) and Census data
(c,d)

null values (density � 5.3 · 10−16) are distributed among 1000 dense regions.
The data distributions with lower dimensionality (called Di, with i ∈ 4..9)
were generated by projecting the values of D10 on the first i of its dimensions.
By means of this strategy, a sequence of multi-dimensional data distributions
was created, with increasing dimensionality (from 4 to 10) and with decreas-
ing density (from 3.9 · 10−4 to 5.3 · 10−16). Diagrams 3.17(a,b) were obtained
by considering, for each Di, a sample of range queries whose selectivity is
respectively 0.1% and 1%. Both these diagrams were obtained using a storage
space of 2000 words. The same kind of experiments were performed on Census
data set. In this case the 8-dimensional data set described in 3.9.2 was pro-
jected on the first i of its dimensions (i = 5..7). In Fig. 3.17(c) and (d) results
obtained on samples of queries having selectivity 0.1% and 1% (respectively)
are depicted.

Both WAVE1 and WAVE2 were not considered on synthetic data, as the
adopted prototype does not work on data sets so large in volume. Error rates



110 3 Hierarchical Binary Histograms

for WAVE1 are not reported in the diagram in Fig. 3.17(c) as they were out of
scale. Diagrams in Fig. 3.17 show that, for both synthetic and real-life data,
error rates of every technique tend to increase as dimensionality increases,
but GHBH accuracy gets worse very slightly and outperforms all the other
techniques at all considered dimensionalities.

3.9.7 Query estimation times

In this section experiments comparing the efficiency of estimating queries
on histograms adopting the FBH and the GHBH representation models are
presented: the estimation time is studied versus a) the amount of storage
space used to represent the histogram; b) the volume of queries; c) the data
dimensionality.

�
GHBH



FBH

Query volume = 0.1 % Storage space = 2000 words
d = 8 d = 8

15

10

5

0

4000300020001000

Storage space (n. of words)

�

�

�
�











15

10

5

0

0.80.40.20.1

Query volume %

� � � �


 
 
 


(a) (b)

Storage space = 2000 words
Query volume = 0.1 % d = 4, 10

15

10

5

0

10864

N. of dimensions

�
� � �


 
 


3750

2500

1250

0

4000300020001000

Storage space (n. of words)

�

�

�

�







 

�

�

�

�


 
 
 


d=4, 10

d=4

d=10

(c) (d)

Fig. 3.18. Comparing query evaluation times (a-c) and number of buckets on syn-
thetic data

Diagrams in Fig. 3.18 were obtained by considering the same synthetic
data sets D4, . . . , D10 used in the experiments of Fig. 3.17(a,b). In particular



3.9 Experimental analysis 111

diagram 3.18(a) depicts query estimation times versus the histogram size for
a bulk of 10000 queries issued on histograms of type FBH and GHBH con-
structed on D8 (all the queries of the bulk having volume that is 0.1% of the
volume of the whole data domain). As expected for both FBH and GHBH
query estimation times increase as the storage space used for representing
histograms increases, since the amount of data that must be accessed to esti-
mate queries gets larger. Diagram 3.18(b) refers to the same data distribution
as diagram 3.18(a) and depicts query estimation times versus query volumes,
for histograms consuming 2000 words (bulks of queries each consisting of 10
000 queries of the same volume were considered).

Diagram 3.18(c) depicts query execution times versus data dimensionality.
In this experiment both the amount of storage space and the query volume
(in terms of percentage of the data domain volume) are kept constant. This
diagram shows that the increase in dimensionality slightly affects the query
estimation times.

Overall, diagrams (a-c) show that estimating queries on histograms adopt-
ing the compression-based representation model of GHBH is faster than the
case of histograms of type FBH consuming the same amount of storage space.
This behavior turns out to be independent on the invested amount of storage
space, the query volume, and the data dimensionality.

The relevance of this result is strengthened by considering that a GHBH
consists of a much larger number of buckets than an FBH built within the same
storage space bound. Diagram 3.18(d) depicts the number of buckets obtained
by the histograms of type FBH and GHBH constructed on the 4-dimensional
and the 10-dimensional data distributions of diagram 3.18(c) (that is, the data
distributions having the lowest and the highest dimensionality, respectively).
In the examined cases, adopting the GHBH representation model yields a
number of buckets which ranges from 2.5 times to 5 times the number of
buckets of an FBH (in the case of 4-dimensional data and 10-dimensional
data, respectively). Observe that the amount of buckets of a GHBH is almost
unaffected by data dimensionality, whereas the number of buckets of an FBH
decreases as dimensionality increases. This is in agree with the formulas re-
ported in Table 1, as it can be easily observed that both βmin

GHBH and βmax
GHBH are

weakly sensitive to d, whereas βFBH is inversely proportional to ξ.
Analogous results were obtained on real-life data distributions. In Fig. 3.19

results obtained by performing the same kind of experiments on Census data-
sets used in Fig. 3.17(c,d) are reported. Also in this context, GHBH repre-
sentation allows always a more efficient query evaluation w.r.t. FBH one, for
various values of storage space (Fig. 3.19(a)), query volume (Fig. 3.19(b)) and
number of dimensions (Fig. 3.19(c)), and yields a larger number of buckets
(Fig. 3.19(d)).



112 3 Hierarchical Binary Histograms

�
GHBH



FBH

Query volume = 0.1 % Storage space = 2000 words
d = 8 d = 8

15

10

5

0

4000300020001000

Storage space (n. of words)

�
�

�
�











15

10

5

0

0.80.40.20.1

Query volume %

� � � �


 
 
 


(a) (b)

Storage space = 2000 words
Query volume = 0.1 % d = 5, 8

15

10

5

0

8765

N. of dimensions

� � � �


 
 
 


3750

2500

1250

0

4000300020001000

Storage space (n. of words)

�

�

�

�











�

�

�

�







 


d=5, 8

d=5
d=8

(c) (d)

Fig. 3.19. Comparing query evaluation times (a-c) and number of buckets on Census

3.9.8 Histogram construction times

In this section is is shown how the execution times of Greedy Algorithms
constructing a GHBH depend on several parameters, such as the storage space
(i.e. number of buckets), the density, the volume, the dimensionality of D, and
the grid degree. In particular, the execution times are presented when either
the sparse data model, or the non-sparse one, or pre-computation is adopted.

Diagrams in Fig. 3.20 have been obtained for greedy algorithms adopting
the Max-Var/Max-Red constructing an 8-GHBH.

Experimental results reported in Fig. 3.20 are basically consistent with the
complexity bounds of Table 3.4, and can be summarized as follows:
- when the sparse model is used, the execution time of Greedy Algorithm is

sensitive only on the number of non-null values in D (it grows linearly with
N - see Fig. 3.20(a)), but is almost independent on either the data domain
volume - Fig. 3.20(b) - and the dimensionality - Fig. 3.20(d);

- otherwise (if either the non-sparse data model is adopted or pre-computation
is performed) the execution time of Greedy Algorithm is unaffected by an



3.9 Experimental analysis 113

�
Sparse

�
Non-Sparse

�
Precomputation

Storage space=10 000 words Storage space=10 000 words
Data domain = 300×300×300 Nz = 100 000

80

60

40

20

3210

Data density %

� � � �

� � � �

� � � �

30

20

10

1.5e+0071e+0075e+0060

Data Domain Volume

� � � ��

�

�

�

� �
�

�

(a) (b)

N=135 000 N=135 000
Volume = 300×300×300 Volume = 2.7 · 107 cells

80

60

40

20

40000300002000010000

Storage space (n. of words)

� � � �

� � � �

� � � �

75

50

25

6543

N. of Dimensions

� � � �

�

�

�
�

�

�

(c) (d)

Fig. 3.20. Comparing efficiency of algorithms

increase in N , but it worsens dramatically as either d or nd increases; in par-
ticular, the algorithm using pre-computation is faster than the one adopting
the non-sparse model without pre-computation;

- when the sparse data model is used, if data density is smaller than a thresh-
old, Greedy Algorithm is faster w.r.t. the case of non-sparse model or pre-
computation. For instance, in the case depicted in Fig. 3.20(a), if data density
is smaller that ρ∗ = 3% the adoption of the sparse data model provides better
performances than the use of pre-computation. Indeed, the exact value of the
data density ρ∗ where the execution times of the different approaches (based
on either the sparse data model or the use of pre-computation) are about the
same depends on a lot of parameters. In particular, it is worth noting that
as the dimensionality increases, algorithms performing pre-computation or
adopting the non-sparse data model slow down dramatically (as shown in
Fig. 3.20(d)) so that the data density threshold gets a much larger value.



114 3 Hierarchical Binary Histograms

However, in practical scenarios, especially for data distributions with high-
dimensionality, data density is so small that algorithms based on the sparse
data model do perform much better than the others.

Fig. 3.20(c) shows that execution times of greedy algorithms is not very sen-
sitive w.r.t. the size of the available storage space. This can be explained as
follows:
- in the case that pre-computation is performed, the cost of the pre-computation

step dominates the construction of the histogram. As explained in Sec-
tion 3.7.3, the pre-computation step makes Evaluate more efficient to be
performed, so that even if the number of buckets to be built increases, the
computational overhead needed to compute them is almost negligible (i.e.
the number of invocations of Evaluate increases, but each invocation is fast
to be accomplished);

- in the other cases, the largest portion of execution times is devoted to the
computation of the “first” steps, which involve very large buckets. For in-
stance, at the first step of the greedy algorithms, the function Evaluate has
to scan all values of D, that is either nd values (non-sparse data model) or
N values (sparse data model) must be accessed. As the construction process
goes on, the buckets to be processed become smaller and smaller, so that the
cost of performing further splits is almost negligible.



4

Clustering-based Histograms

In the previous chapter an effective technique for constructing histograms
based on binary hierarchical partitions has been proposed. The technique,
namely GHBH, has been shown to outperform the other histogram-based tech-
niques and also some wavelet-based techniques to which it has been compared.
The superiority of the techniques, besides to the very efficient representation
models that it exploits, is due to the greedy criterion called Max-Var/Max-
Red, which is capable of locating dense regions (see Fig. 3.11), task in which
other greedy criteria, adopted by state-of-the-art techniques such as MHIST
and Min-Skew, fail. If the greedy criterion guiding the partitioning of data
domain is not suitable for distinguishing dense from sparse regions, the parti-
tioning will yield buckets with high variance, that do not enable to estimate
accurately range queries on the basis of the uniform distribution assumption.
However, even though Max-Var/Max-Red does not suffer of this problem,
there is an intrinsic limitation in all the techniques which base the data sum-
marization on the construction of partitions by means of binary splits applied
in a top-down fashion. In fact, when the data domain is very large, which is
more and more likely as dimensionality of data increases, a top-down splitting
process of the data domain, within a significantly bounded number of splits,
it is unlikely to “reach” the dense regions, in order to isolate them. Thus,
the possibility of summarizing together dense and sparse regions persists. For
instance, consider two data distributions D2 (of size n2) and D10 (of size
n10), where the same number of data points are distributed, respectively, on a
two-dimensional and ten-dimensional domain. If the same number of buckets
is used to partition D2 and D10, buckets of D10 are likely to be much larger
in volume than those of D2. Therefore, the aggregate information associated
to buckets of D10 is less localized than buckets of D2 (as the aggregate value
associated to each bucket is spread onto a larger volume), thus providing a
poorer description of the actual data distribution.

In order to give an idea about the problems deriving from summarizing
together dense and sparse regions, consider the bucket shown in Fig. 4.1. As
the values inside the bucket are summarized by means of their sum, estimat-



116 4 Clustering-based Histograms

A bucket b Two “intra-bucket”
queries

Q
1

Q
2

Fig. 4.1. Queries involving a inhomogeneous bucket

ing either Q1 and Q2 by adopting the uniform distribution assumption yields
a high error rate, since the total sum is assumed to be homogeneously dis-
tributed inside b. In fact, this assumption is far from being true: most of the
sum of b is concentrated in the dense cluster on the right-hand side of b.

Improving the ability of distinguishing dense regions can result in more
accurate partitions, as this prevents buckets like that of Fig. 4.1 from being
constructed. The problem of searching homogeneous regions is very close to
the data clustering problem, that is the problem of grouping database objects
into a set of meaningful classes. This issue has been widely studied in the
data mining context, and several algorithms accomplishing data clustering
have been proposed. Briefly, the clustering techniques can be classified in par-
titional, hierarchical, and locality-based. The partitional techniques the data
point partitioning into clusters aims at optimizing an objective function, such
as the distance between points. Each cluster is represented by either the mean
of its points (k-means [93]), or by one of its points chosen as representative
(k-medoid [80]). CLARANS [105] is an extension of traditional k-medoid algo-
rithms yielding higher accuracy in locating clusters (even it could converge to
a local optimum), but it is not well-suited for large databases as it may require
multiple scans of the data points. Hierarchical clustering techniques construct
a hierarchy of clusters by adopting either a top-down strategy (divisive hierar-
chical techniques) or a bottom-up one (agglomerative hierarchical techniques).
BIRCH [137] and CURE [54] are examples of hierarchical algorithms. The for-
mer first populates a special data structure, namely CF Tree, where summary
information of sub-clusters of object is stored, and then it runs an agglom-
erative algorithm on the previously generated sub-clusters. It is known to be
unsuitable for distributions consisting of arbitrary shaped clusters or cluster
having different sizes. On the contrary, CURE succeeds in identifying clus-
ters having complex shapes and different sizes, and outperforms BIRCH on
large databases. It uses a combination of random sampling and partitioning,
where the clusters are characterized by a set of representative points, unlike
BIRCH which uses a single centroid. Locality-based techniques group points
according to some local property. The most representative technique in this
class is DBSCAN [38], which is a density-based technique. A cluster is built



4.1 CHIST : Clustering-based Histogram 117

progressively by starting from a core-point (i.e., a point having a dense neigh-
borhood), inserting all of its neighbors into the cluster, and then expanding
the cluster from all core-points inserted at the previous step. OPTICS [6] is an
extension of DBSCAN producing an augmented ordering of points represent-
ing its density-based clustering structure. A detailed survey of the existing
clustering techniques can be found in [81].

In the following, a new clustering-based histogram construction technique,
called CHIST , is proposed. The proposed technique enhances the histogram
construction by adopting a clustering technique for locating dense regions,
thus overcoming the problem of summarizing dense and sparse regions to-
gether. Then, this technique is extended to the case that data to be sum-
marized are dynamic. In this scenario, re-executing the clustering of data at
each data update is not feasible, due to the inefficiency of this task. Thus, a
strategy for exploiting an incremental clustering approach (where the cluster-
ing is updated at each bulk of updates without reprocessing the whole data)
is adopted in order to efficiently propagate data updates to the histogram.
Finally, an experimental analysis of the technique performances is presented,
both in terms of accuracy to range query estimates and histogram updating
efficiency.

4.1 CHIST : Clustering-based Histogram

The proposed technique works in three steps. At the first step clusters of data
and outliers (i.e. points which do not belong to any cluster) are located. At
the second step, these clusters and the set of outliers are treated as distinct
layers, and each layer is summarized by partitioning it according to a grid-
based paradigm. At the last step the histogram is constructed by “assembling”
all the buckets obtained at the previous step.

The three phases of thus approach are described in detail in the follow-
ing sections. The description of the algorithm is provided by assuming a d-
dimensional data distribution D, as described in Section 1.5. The amount of
available storage space for the representation of the histogram will be denoted
as B.

4.1.1 Step I: clustering data

The adopted algorithm for grouping data into dense dense clusters is DBSCAN
[38], which is the most representative of density-based clustering algorithms.
Even though the presented approach can be viewed as orthogonal to any
clustering technique, DBSCAN has been chosen as it seems to be the most
suitable for supporting the histogram construction. In fact, due to its density-
based bottom-up clustering strategy, it can not fail in locating dense regions.

The idea underlying DBSCAN is that points belonging to a dense cluster
(except those points lying on the border of the cluster) have a dense neigh-
borhood. A point p is said to have a dense neighborhood if there are at least



118 4 Clustering-based Histograms

MinPts distinct points whose distance from p is less than Eps (both Eps and
MinPts are parameters crucial for the definition of clusters). Points with a
dense neighborhood are said to be core points. DBSCAN scans input data
searching for core points. Once a core point p is found, a new cluster C is
created, and both p and all of its neighbors are grouped into C. Then C is
recursively expanded by including the neighbors of all core points put in C
at the last step. When C cannot be further expanded, DBSCAN searches for
other core points to start new clusters, until no more core points can be found.
At the end of the clustering, points which do not belong to any cluster are
classified as outliers. Fig. 4.2 depicts an example of clustering obtained by
DBSCAN.

A core
point

Points with
non-dense

neighborhood

The cluster obtained by DBSCAN ( =4)MinPts

c point with a dense neighborhood
b point in the cluster with a non-dense neighborhood
o point belonging to no cluster

: core point ( )
: border point ( )
: outlier ( )

c

o

c

b

b

o

bb

c

o
b

Fig. 4.2. Running DBSCAN on a set of points in a two-dimensional space

4.1.2 Step II: summarizing data into buckets

At this step the input data distribution is viewed as a superimposition of
layers. Each layer is either a cluster or the set of outliers. In the following
L0 will denote the layer consisting of outliers, and L1, . . . , Lc will denote the
layers corresponding to dense clusters. L0 will be said to be the outlier layer,
whereas L1, . . . , Lc will be said to be cluster layers. Each layer is represented
by means of its MBR (i.e. the minimal hyper-rectangle containing all non-null
points of the layer.

The different layers are summarized separately by partitioning their MBRs
into buckets. This aims at preventing the construction of buckets where dense
and sparse regions are put together, which, as explained before (see Fig. 4.1),
can yield poor accuracy. The summary of the whole data distribution will be
the superimposition of the summaries of all layers.

The summarization of layers is accomplished by a multi-step algorithm
which, at each step, summarizes a single layer by partitioning it according to
a grid and storing, for each bucket defined by this grid, both its MBR and
the sum of its values (obviously, the cells of this grid which do not contain
any data point result in empty MBRs which are not stored). The MBRs of
buckets obtained from the summarization of cluster layers will be said to be
c-buckets, whereas the MBRs of the buckets constructed by partitioning L0

will be said to be o-buckets.



4.1 CHIST : Clustering-based Histogram 119

Indeed, layer L0 is processed after the summarization of all the cluster
layers. In particular, before summarizing the outlier layer, all outliers are
scanned in order to locate those lying onto the range of some c-bucket. Each
outlier o which lies onto some c-bucket is removed from L0 and “added” to
one c-bucket whose range contains the coordinates of o1. This enables the
c-buckets to be viewed as “holes” of L0, in the sense that, after performing
this task, there are no points lying onto the range of some c-bucket which
belong to L0. As it will be clear in the following, this will be exploited in the
physical representation of the histogram to improve its accuracy.

The overall available storage space to summarized data, must be parti-
tioned among the layers in order to summarize each of them. Let Bi be the
amount of memory which is left from the i− 1 previous summarization steps
(at the first step, B1 coincides with the initial amount of storage space B).
The portion of Bi which is invested to summarize Li is denoted as B(Li)
and is computed by comparing the need of being partitioned of Li with all
remaining layers Li+1, . . . , Lc, L0. The need of being partitioned of a layer L
is estimated by computing its SSE (denoted as SSE(L)), thus
B(Li) = Bi · SSE(Li)

SSE(L0)+
Pc

j=i SSE(Lj)
.

Li is partitioned according to a regular grid and, for each cell of the grid
containing at least one point, the coordinates of its MBR and the sum of the
values occurring in it are stored. The grid on a layer Li is constructed as
follows.
Denoting the amount of storage space needed to store a bucket by W 2,
the number of buckets produced by the grid on Li can be no more than
nb = �B(Li)

W �. Thus, if tj is the number of divisions of the grid along the j-th
dimension of Li, it should be

∏d
j=1 tj = nb.

A grid could be easily constructed by means of an equi-partitioning strat-
egy, i.e. by partitioning all edges of theMBR into the same number of portions.
That is, it could be possible to choose t1 = t2 = · · · = td = d

√
nb. Indeed, this

choice is likely to result in a grid whose cells are hyper-rectangles having
edges with large differences in length, unless the MBR of the layer has edges
with about the same size. A partition with buckets having large differences
in length (see Fig. 3.11) is likely to provide poor accuracy in query estimates,
as it is less effective in preserving the locality of information. This is due
to the fact that summarizing the points inside a bucket into a single value
means spreading each point onto the whole range of the data domain delim-
ited by the bucket itself. Therefore, each point can give a contribution to cells
of the domain whose distance is bounded by the maximum diagonal dmax of
the bucket. Observe that, each possible partitioning of the MBR of Li into a

1 If more than one c-bucket contains o, one of these c-buckets is randomly selected
to incorporate o. Adding an outlier o to a c-bucket b means removing o from L0

and adding the value of o to sum(b).
2 2 ·d 32-bit words will be adopted for storing bucket boundaries, and one 32-bit

word for storing the sum-aggregate



120 4 Clustering-based Histograms

given number of cells nb by means of a grid yields cells having the same volume
(i.e. vol(Li)/nb)3. The value of dmax, for buckets having the same volume, is
minimized when the length of edges of the bucket is the same. For instance,
consider the two buckets b′ of size 10×10×10, and b” of size 100×5×2. These
two buckets have the same volume, but very different values of the maximal
diagonals. In fact, for b′ it results d′max =

√
102 + 102 + 102 ∼= 17.1 and for b”

d”max =
√

1002 + 52 + 22 ∼= 100.1. Therefore, after performing summariza-
tion, the information of a point at a vertex of the range of b′ is kept more
localized than that of a point at a vertex of the range of b”. Moreover, it is
quite intuitive that a bucket is more and more likely to overlap a given range
query as its maximal diagonal gets larger. Then, range queries estimations are
likely to involve a larger and larger number of buckets as the partition of data
domain contains buckets having larger and larger maximal diagonals. Thus,
the estimation is likely to be less accurate, as it is affected by the errors due
to a larger number of approximate contributions.

In order to prevent large differences in values between the edges of buckets,
each edge of the MBR of the layer to be summarized is partitioned into a
number of portions which is proportional to the length of the edge itself.
Let wj be the length of the edge along the j-th dimension. Choosing tj =

wj · d

√
nb

vol(Li)
guarantees both that

∏d
j=1 tj = nb and that the grid degree

along each dimension is chosen by weighting the corresponding edge size.
Indeed, this formula can result in non-integer value coefficients t1, . . . , td.

Therefore t1, . . . , td must be rounded, with the constraint that their prod-
uct cannot be larger than nb(L). Rounding each tj to the nearest integer
�tj +0.5� does not guarantee that

∏d
j=1 tj = nb. On the other hand, truncat-

ing each tj to �tj� guarantees
∏d

j=1 tj = nb, but this may result in a grid with
much fewer cells than nb. This is due to the fact that independent approxima-
tions of the values tj does not enable to control the final approximate value
of their product.

In order to prevent this problem, the degrees of the grid along each di-
mension are computed progressively, starting from t1 to td, according to the
following scheme:

t′1 = max{�t1�, 1}; t′2 = max
{⌊

t1·t2
t′1

⌋
, 1
}

; . . . t′d = max

{⌊Qd
j=1 tj

Qd−1
j=1 t′j

⌋
, 1
}
.

That is, the value of each tj is approximated to t′j by taking into account
the approximations already performed at the j − 1 previous steps4.
For instance, consider a 4-dimensional layer Li whose MBR has size 30 ×
60 × 120 × 240. Let V ol = 30 · 60 · 120 · 240 be the volume of the MBR of
Li, nb = 100 be the number of buckets which can be constructed on Li, and

3 In the following, vol(Li) will denote the volume of the MBR of the layer Li
4 A better approximation could be obtained by rounding t′j to the nearest integer,

but this would not guarantee to obtain a number of cells not larger than nb



4.1 CHIST : Clustering-based Histogram 121

K = d

√
nb

V ol . It results t1 =30·K∼=1.1, t2 =60·K∼=2.2, t3 =120·K∼=4.5, and
t4 = 240 ·K ∼= 8.9. Truncating tj to �tj� would results in a number of bucket
equal to 1 · 2 · 4 · 8 = 64. Instead, by progressively approximating tj , it results
t′1=�t1�=1, t′2 =

⌊
t1·t2

1

⌋
=2, t′3 =

⌊
t1·t2·t3

1·2
⌋
=5, and t′4 =

⌊
t1·t2·t3·t4

1·2·5
⌋
=10.

Although in the case shown above t′1 · t′2 · t′3 · t′4 = nb, it can happen that
constructing a grid using this strategy results in nb′ buckets, with nb′ strictly
less than nb. This can be due either to numerical approximation (the value
of

∏
t′j can be less than nb), or to the fact that some cells of the grid can

correspond to null regions of the data domain, so that they are not stored
explicitly. Therefore, after a layer Li is summarized, the residual amount of
storage space which will be available at step i+1 is given by Bi+1 = Bi−nb′ ·W
(that is, if some space which was assigned to the summarization of Li has not
been consumed, it is reinvested at the following steps).

Fig. 4.3. Detection of layers, data partitioning, and bucket definition

Fig. 4.3 shows the execution of Step I and Step II on a two-dimensional
data distribution.

Remark. Observe that, as the amount of storage space invested to parti-
tion a layer Li depends on its homogeneity (estimated by means of its SSE),
deciding on partitions is not merely based on the proportions between the
length of the dimensions, but strictly depends on data uniformity. Thus, the
less homogeneous the data inside L, the finer the grid and the larger the
number of buckets associated to L. Moreover adopting the grid-based scheme
allows us to partition L in linear time (each data point inside L is accessed
once and summarized in the cell of the grid where it lies into): this feature
will be particularly well-suited for the incremental approach where an efficient
partitioning strategy is needed to propagate data changes to the histogram
(see Section 4.2).

4.1.3 Step III: representation of the histogram

The strategy adopted to partition layers can yield overlapping buckets. In
particular, as buckets aggregating points of L0 (the layer consisting of outliers)



122 4 Clustering-based Histograms

are likely to be larger than buckets describing clusters (outliers are generally
spread over the whole data domain), several c-buckets b1, . . . , bk can lie onto
the range of an o-bucket b. In this scenario b1, . . . , bk can be viewed as “holes”
of b, as the aggregate information associated to b does not refer to points
contained inside b1, . . . , bk. This observation can be exploited to make query
estimation more accurate. In the following, given an o-bucket b, the set of
c-buckets completely contained into b will be denoted as Holes(b).

Fig. 4.4. O-buckets with holes

Consider the scenario depicted in Fig. 4.4(a), where the queryQ1 intersects
one half of the range associated to the bucket b. Adopting linear interpolation
to estimate Q1 returns, it results Q̃1 = vol(Q1∩b)

vol(b) · sum(b), where Q1 ∩ b

refers to the intersection between the query range and the range of b. Indeed,
points belonging to the ranges of b1, . . . , b9 give no contribution to the value of
sum(b). Therefore, a more precise estimate for Q1 is: Q̃1 = vol(Q1∩b)

vol(b)−vol(b1,...,b9)
·

sum(b), where vol(b1, . . . , b9) denotes the volume of the range underlying the
buckets b1, . . . , b9. Likewise, the bucket b should give no contribution to the
estimate of the query Q2 in Fig. 4.4(b), which lies completely on the range
underlying the buckets b1, . . . , b9.

In the following the number of cells of an o-bucket b which are not con-
tained in any hole of b will be said to be the actual volume of b. In the case
depicted in Fig. 4.4(a) evaluating the actual volume of b can be accomplished
efficiently, as b1, . . . , b9 do not overlap. Indeed also c-buckets inside an o-bucket
b can intersect one another 5. For instance, in Fig. 4.4(c) the three buckets
b1, b2, b3 inside b overlap. In this case computing the actual volume of b re-
quires vol(b1), vol(b2), vol(b3), vol(b1∩ b2), vol(b2∩ b3) and vol(b1∩ b2∩ b3) to
be computed. This computation becomes more and more complex when more
buckets intersect in the same region: it is necessary to compute the volumes
of all the intersections between pairs of holes, triplets holes, and so on. Obvi-
ously, this slows down query estimations. Due to this reason, it is preferable
to estimate the actual volume of an o-bucket b involved in a query instead of
evaluating its exact value: To this end, only a maximal subset of Holes(b) (de-
noted as NOHoles(b)) is considered, consisting of non-overlapping c-buckets
5 Although no pair of clusters C1, C2 can overlap (otherwise C1, C2 would be a

unique cluster), MBRs of clusters can overlap (see Fig. 4.4(c)). Thus partitioning
overlapping MBRs can result in overlapping c-buckets.



4.1 CHIST : Clustering-based Histogram 123

completely contained inside the b, thus avoiding intersections between holes
to be computed. For instance, in the case depicted in Fig. 4.4(c) it is possible
to choose NOHoles(b) = {b3}, thus the actual volume of b can be estimated as
vol(b)− vol(b3). However, from several experiments on real-life data it turned
out that intersections between c-buckets are unlikely to occur.

The adopted representation model partitions buckets into two levels. The
buckets at the second level are those belonging to NOHoles(b) for some b. The
first level consists of all the other buckets.

The physical representation model can be exploited to evaluate query an-
swers efficiently. The answer to a given query Q is computed as follows:
1) the first-level buckets whose range overlap the query range are located;
2) for each of these buckets b, all of its hole-buckets b1, . . . , bk are accessed
and those involved in the query are located. Then, the contribution of both b
and its holes to the query estimate are evaluated. In particular for each hole bi
the contribution to the estimate of Q is given by: vol(bi∩Q)

vol(bi)
· sum(bi), whereas

the contribution of b is vol(b∩Q)−Pk
i=1 vol(bi∩Q)

vol(b)−Pk
i=1 vol(bi)

· sum(b).

b

b
1

b
2

b
3 b

2

b
1

b
3

b

b
4

b
5

’

b
6

b’b b
4

b
5

b
6

1 level
st

2 level
nd

Q

b
2

b’b b
4b

1
b

3
b

5
b

6

Linear representation of buckets

(a) (b)

(c)

S1 S2

Fig. 4.5. Nested representation of buckets

For instance, the estimate of the query Q shown in Fig. 4.5(a), according to
the representation shown in Fig. 4.5(b), is given by: Q̃ = vol(b∩Q)−vol(b1∩Q)

vol(b)−vol(b1)−vol(b3)
·

sum(b) + sum(b1) + vol(b2∩Q)
vol(b2)

· sum(b2).
Therefore the adopted representation scheme enables range query answers

to be estimated by accessing each bucket at most once.
Observe that representing some c-buckets as holes of o-buckets introduces

no spatial overhead on the representation of o-buckets. That is, the two-levels
organization of buckets can be linearized by representing buckets into two
distinct sequences S1, S2. In particular, S1 contains all o-buckets and their
non-overlapping holes: each o-bucket b is followed by the representation of



124 4 Clustering-based Histograms

c-buckets in NOHoles(b) (see Fig. 4.5(c)). Thus, locating non-overlapping
holes of an o-bucket b at position i in this sequence can be accomplished
by scanning the positions of the sequence following i, till either the end of
the sequence or an o-bucket having an empty intersection with b is reached
(for instance, the holes b1, b3 of b occur in the sequence between b and b′).
Sequence S2 contains all c-buckets which do not belong to any NOHoles(b)
for any o-bucket b.

This is why c-buckets which partially overlap o-buckets are not considered
as holes. For instance, in the case of Fig. 4.5(a), bucket b4 is not taken into
account to estimate the actual volumes of b and b′. Otherwise, a reference to
b4 should be inserted into both the representations of b and b′ a reference to
b4 (which cannot be accomplished by a sequential physical representation of
the histogram), and moreover bucket b4 should be accessed more than once
to estimate queries involving b and b′.

The idea of representing some buckets as holes of other buckets was intro-
duced in [11]. In that work, holes of buckets are determined by query results
feedback; if two holes overlap, one of them is shrunk; the aggregate infor-
mation of the portion of the hole which has been cut off is estimated by
linear interpolation and spread onto the overlying bucket. This approach is
not suitable in this context as here holes are dense buckets, so that spreading
their aggregate information onto an o-bucket (which is often much larger and
sparser) may result in a severe loss of accuracy.

The algorithm implementing steps I, II, III is depicted in Fig. 4.6. Therein

• size takes as argument a set of buckets and returns their storage space
consumption.

• GridPartition takes as argument the MBR of a layer and a storage space
bound; it creates a grid on the MBR of layer such that the number of cells
can be stored within the specified storage space bound; then it returns all
the non-null buckets defined by the grid.

• Distribute takes as argument the layer of outliers L[0] and the set of c-
buckets. For each outlier o lying onto the range of some c-bucket, this
function removes o from L[0] and adds o to a c-bucket b whose range con-
tains o (that is, the value of o is added to the aggregate sum(b)). If o lies
onto the range of more than one c-bucket, then one of these c-buckets b is
randomly chosen and o is added to it.

• NOHoles takes as argument an o-bucket b and returns a maximal subset
of non-overlapping c-buckets whose range is completely contained inside
that of b.

Remark. It is worth noting that the idea of possibly representing a c-bucket
as a hole of an o-bucket cannot be extended to the case of pairs of c-buckets
b′, b′′ such that b′ is completely contained into b′′. Fig. 4.7 shows an example



4.1 CHIST : Clustering-based Histogram 125

INPUT D: a multi-dimensional data distribution;
B: available amount of storage space for rep-

resenting the histogram;

OUTPUT H: a clustering-based histogram on D within
B consisting of two sequences S1 and S2 of
buckets (see Fig. 4.5 c);

begin
L := DBSCAN(D);

SSEtot =
PL.size-1

i=0 SSE(L[i]);
C-Buckets= ∅;
for ( i ∈ {1..L.size − 1} ) do begin

BLi = SSE(L[i])
SSEtot

· (B − size(C-Buckets));

C-Buckets = C-Buckets∪ GridPartition(L[i], BLi);
SSEtot = SSEtot − SSE(L[i]);

endfor;
Distribute(L[0],C-Buckets);
O-Buckets = GridPartition(L[0], B−size(C-Buckets));
for ( b ∈ O-Buckets ) do begin

NOH = NOHoles(b);
C-Buckets= C-Buckets - NOH ;
H.S1 = H.S1 ∪ b ∪ NOH ;

endfor;
H.S2 = C-Buckets;
return H;

end;

Fig. 4.6. CHIST Algorithm

Fig. 4.7. Two clusters whose MBRs overlap

of two clusters C1, C2 whose MBRs overlap. Observe that after partitioning
C1 into b1, b2 and C2 into b3, b4, the range of the bucket b4 is completely
contained into that of b2, but b4 cannot be considered as a hole of b2, as there
are points of both C1 and C2 laid into the range of b4.



126 4 Clustering-based Histograms

4.2 Incremental maintenance of CHIST

The computational complexity of the proposed clustering-based histogram
construction is dominated by the cost of executing DBSCAN. DBSCAN runs
in O(N ·logN) if a multi-dimensional indexing technique is adopted to support
the efficient location of neighbors. Indeed, its complexity degrades to O(N2)
on high-dimensional data sets, where no indexing technique is known to be
efficient in searching the neighbors of data points.

500 1 000 2 000 4 000

CHIST 361 + 2.1 361 + 4.2 361 + 8.5 361 + 19.2

GENHIST 18 30 71 149

GHBH 1.5 1.6 2.0 2.2

Table 4.1. Histogram construction times (seconds)

Table 4.1 shows the construction times, of CHIST , GENHIST andGHBHon
a 8-dimensional data distribution containing 200 000 tuples for different stor-
age space bounds (500, 1000, 2000, and 4000 words).

Construction times for CHIST are expressed as a sum of two contribu-
tions: the first one is the time needed to execute DBSCAN, the second one
refers to Step II and Step III of the algorithm. It is clear that the clustering
step overwhelms the rest of the algorithm execution, and it make the CHIST
algorithm significantly slower than the other ones. This could not be a cru-
cial drawback: the summarization of data is an off-line task which is usually
performed on historical data, so that in practice it is executed only once.

However, this is likely to limit the applicability of CHIST to static data
sets, such as non-evolving historical data, where the construction of the his-
togram is performed only once.

Otherwise, in the case of evolving data sets, any change of the data would
require the re-execution of the algorithm from scratch. In order to reduce
the overhead due to this task, the re-computation of the histogram could
be scheduled to be run periodically (e.g. every night) or when the system
managing data is unloaded. But this could make the histogram out-of-date,
thus compromising the estimation accuracy, especially in the case that data
change much more frequently w.r.t. histogram re-computation. Observe that
the adoption of a clustering technique more efficient than DBSCAN does
not suffice to solve this problem, as no technique is known to accomplish
the (from-scratch) clustering fast enough: any technique would require the
overall data to be re-scanned at least once, which makes frequent histogram
re-computations unfeasible in practice.

A possible solution to this problem is to adopt an incremental cluster-
ing technique to propagate efficiently data changes to the clusterization. An



4.2 Incremental maintenance of CHIST 127

incremental clustering algorithm computes the clusterization of the updated
data starting from the preexisting clusterization and modifying it according
to the data updates, aiming at reducing as much as possible the amount of
data to be accessed. However, replacing the non-incremental clustering step
with an incremental one at Step I may not suffice to make the whole technique
well-suited for reacting to frequent updates. In fact, Step II requires a linear
scanning of data to compute the bucketization of all layers. In order to exploit
the advantage of incremental clustering, Step II needs to be changed too, so
that layers which are not affected by the data updates are not repartitioned,
thus exploiting as much as possible the preexisting bucketization.

Motivated by these observations, in this section an incremental algorithm
for maintaining the histogram up-to-date w.r.t. data changes is proposed.
In more detail, the proposed strategy works in three steps, which will be
described in the following sections:

I Incremental clustering;
II Storage space distribution among layers and partitioning;

III Rearrangement of buckets.

Throughout the following sections each point p of the data distribution
is assumed to be marked with two labels6 Flag(p) and Layer(p). The former
has a boolean value, specifying whether p is an outlier or belongs to a cluster.
Layer(p) is the identifier of the layer where p is summarized: thus, if p is
an outlier summarized in a o-bucket then Layer(p) = 0, else if p is a point
summarized in a c-bucket obtained by partitioning the layer Li then Layer(p)
is the identifier of Li. Basically, the values of Flag(p) and Layer(p) describe
the current composition of layers before executing a bulk of updates, and
are changed accordingly to the data updates during steps I,II. In particular,
during the execution of these steps, Layer(p) can be also assigned −1, meaning
that p has not been assigned to any layer yet.

4.2.1 Step I: incremental clustering

The task performed at this step consists in propagating data updates to the
clusterization. There are several techniques in literature which accomplish
this task in an incremental fashion, that is they compute the clusterization of
updated data without re-executing the clustering algorithm from scratch on all
the data. The incremental clustering technique adopted to extend CHIST to
evolving data sets is Incremental DBSCAN [39]. According to this technique,
data updates may have different effects on the clusterization, and thus on the
corresponding layers. When a new point p is added to the data distribution,
one of the following cases may occur:

6 Apart from further labels possibly associated to the points by the adopted clus-
tering algorithm



128 4 Clustering-based Histograms

I1- no new cluster is created, and no old cluster is affected : this happens if p
is an outlier; in this case, the layer of outliers must be augmented, whereas
the other layers need no change; Flag(p) is assigned 0 (meaning that p is
classified as an outlier) and Layer(p) is assigned −1 (meaning that p is an
outlier which has not been summarized in any bucket yet);

I2- a new cluster including p is created, and no old cluster is affected : in this
case, a new layer is created (corresponding to the new cluster), and the
layer of outliers may need to be reduced (in the case that some preexisting
outliers are absorbed into the new cluster). Layers corresponding to pre-
existing clusters need no change. In this case, for each point p′ included in
the new cluster, Flag(p′) is assigned 1 and Layer(p′) is assigned the id of
the new cluster.

I3- no new cluster is created, and some old clusters are affected : this can arise
from one of the following cases:
– p is adsorbed by exactly one of the preexisting clusters: in this case, the

layer of the involved cluster must be augmented; Flag(p) is assigned 1
and Layer(p) is assigned the id of the cluster adsorbing p;

– p is adsorbed by two or more clusters, and these clusters are merged
in a single one: in this case, the layers of the merged clusters must
be deleted, and a new layer corresponding to the new cluster must
be created. For each point p′ adsorbed by the new cluster Flag(p′) is
assigned 1 and Layer(p′) is assigned the id of the new cluster.

Moreover, in both cases the layer of outliers must be reduced if some
preexisting outliers are absorbed into a cluster together with p. For each
of these points p′, Flag(p′) changes from 0 to 1 and Layer(p′) is assigned
the id of the adsorbing cluster.

Analogously, when a point p is deleted from the data distribution it can be
one of the following cases:

D1-no old cluster is affected : this happens if p was an outlier; in this case, the
layer of outliers must be reduced and no other layer need updates;

D2-exactly one old cluster is affected : this happens if p belonged to a cluster
C. In particular, one of the following cases can occur:
a. C is reduced : this happens when after the removal of p some points of

C become outliers; in this case the layer of C must be reduced and the
outlier layer must be augmented. In particular, for each p′ which is no
more a cluster point, Flag(p′) is assigned 0 and Layer(p′) is assigned
−1;

b. C is deleted : this happens when the removal of p results in making no
point of C have a dense neighborhood, thus all points of C become
outliers; in this case the layer corresponding to C is deleted and the
layer of outliers must be augmented. For each point p′ which belonged
to C Flag(p′) is assigned 0 and Layer(p′) are assigned −1;

c. C is split into two or more clusters: this happens when, after the re-
moval of p, two or more core points are no more density-reachable from



4.2 Incremental maintenance of CHIST 129

one another; thus they define distinct clusters. In this case the layer
corresponding to C is split into two layers (i.e. the layer of C is deleted
and two new layers are created). Moreover the layer of outliers may
need to be augmented (in the case that some points belonging to C
become outliers). For each point p′ involved in the split, the values of
Flag(p′) and Layer(p′) are changed consistently.

The above-reported list summarizes the operations performed on layers for
a single update. Indeed an incremental clustering step consists of processing
a bulk of updates, which is processed as a sequence of single updates. See [39]
for further details and graphical examples on how inserting/deleting points
can change clusterization.

The histogram maintenance is supported by an auxiliary (main-memory
resident) data structure consisting of two sets Lnew and Lold , whose items are
of the form
〈L,MBR(L), sum(L), sum2(L), count(L), B(L)〉, where L is a layer identifier
and B(L) denotes the amount of storage space which was invested to partition
L during the construction of the old histogram (obviously B(L) = 0 if L is a
newly detected layer). The aggregate data sum(L), sum2(L) and count(L),
as well as MBR(L), will be used at Step 2 to evaluate the SSE of L, whereas
B(L) will be used to decide whether old layers need to be repartitioned or
not. Basically, at the end of the incremental clustering step, Lnew and Lold

contain the up-to-date clusterization (w.r.t. the processed bulk of insertions
and deletions). In particular, Lold contains the list of the layers which existed
before the bulk of updates and which have not been affected by the updates;
on the contrary, Lnew consists of the layers which were not in the preexisting
clusterization. Neither Lold nor Lnew contain any tuple corresponding to the
layer of outliers: aggregate data of L0 are stored separately from these lists.

At the beginning of the incremental clustering step, Lnew is empty while
Lold contains the list of the preexisting layer identifiers and their aggregate
data (except from L0). During the execution of the incremental clustering
step, both Lnew and Lold are maintained up-to-date as follows. Consider
an update operation u (i.e. insertion or deletion) in the processed bulk of
updates. Let Affected(u) be the set of layers affected by u and Created(u)
the set of layers created after performing u. Basically, Affected(u) contains
layers in Lold ∪ Lnew which need either augmentation or reduction or dele-
tion, whereas Created(u) contains layers which need to be created (i.e. lay-
ers in Created(u) can result from either splitting clusters, merging clus-
ters, or creating new clusters). For each layer L in Created(u) the tuple
〈L,MBR(L), sum(L), sum2(L), count(L), 0〉 is inserted into Lnew . For each
layer L in Affected(u) the following operations are performed. If L has to be
deleted, then the corresponding tuple is removed from the list it belongs to
(either Lnew or Lold). Otherwise, if L needs either augmentation or reduction,
the attributes MBR(L), sum(L), sum2(L), count(L) in the corresponding tu-
ple are updated. Moreover, if L was in Lold the corresponding tuple is moved



130 4 Clustering-based Histograms

to Lnew (after assigning 0 to B(L)). Finally, for each outlier p which had
been summarized into the buckets of some layer in Affected(u) the value of
Layer(p) is changed to −1.

Therefore, at the end of the incremental clustering, every point p classified
as a cluster point is assigned Flag(p) = 1 and Layer(p) = id(L), where L is
the layer corresponding to the cluster containing p. For each outlier p, Flag(p)
is assigned 0; as regards Layer(p) one of the following cases can occur:

• Layer(p) = i ≥ 0: this means that p is currently summarized into a bucket
associated to the layer Li;

• Layer(p) = −1: this means that p is not currently summarized into any
bucket (this can be due to two reasons: either p is a newly created outlier,
or p was an outlier summarized into a layer affected by the data update).

As will be shown in the following section, every outlier whose Layer value
is −1 will be assigned to exactly one layer and summarized into one of its
buckets. That is, if the outlier p happens to be summarized into an o-bucket,
then Layer(p) will be assigned 0, else if p happens to be adsorbed by a c-
bucket b, then Layer(p) will be assigned the id of the layer which b refers
to.

Lists Lnew and Lold will be used at Step II to detect layers which need to
be partitioned.

4.2.2 Step II: storage space distribution among layers and
partitioning

The incremental clustering step results in a new clusterization, where new lay-
ers may be added and some preexisting layers may be either deleted or modi-
fied w.r.t. the previous clusterization. The overall amount of storage space B
must be now redistributed among the layers in L = Lnew∪Lold∪{L0}. Adopt-
ing the same criterion as the non-incremental approach (see Section 4.1.2) is
likely to result in changing the amount of storage space assigned to layers in
Lold , thus requiring also all layers non-affected by data updates to be repar-
titioned. This should be avoided, as it would imply to re-scan all data points.
Thus, in the incremental approach, a different strategy to distribute the avail-
able storage space B among layers is adopted. This strategy aims at being
fair and restricting as much as possible the set of preexisting layers to be
repartitioned.

Layers in Lold and Lnew and the layer of outliers L0 will be considered
into three distinct phases, to be executed in the following order.

Partitioning layers in Lold . Let B̂(Lold) denote the portion of B which has
to be assigned to all the layers in Lold . According to a fair distribution of the
available storage space B between Lold and Lnew , it should result:

B̂(Lold) =
SSE(Lold)
SSE(L)

·B,



4.2 Incremental maintenance of CHIST 131

where: SSE(Lold ) =
∑

L∈Lold
SSE(L) is an estimate of the overall inhomo-

geneity of layers in Lold , and: SSE(L) =
∑

L∈L SSE(L) measures the overall
inhomogeneity of all the layers resulting from the clusterization. Notice that
the SSE of each layer L is computed by accessing the aggregate data sum(L),
sum2(L), count(L), MBR(L), stored in the tuple in L corresponding to L:
SSE(L) = sum2(L) − (sum(L))2

Vol(L) .
Let B(Lold) =

∑
L∈Lold

B(L) be the amount of storage space consumed
by the summarization of all the layers in Lold . First B̂(Lold) is compared to
B(Lold). The idea is that if B(Lold) is pretty “close” to B̂(Lold) there not
need to repartition layers in Lold . In particular, in order to decide whether
B(Lold) is close to B̂(Lold), a threshold parameter t is introduced. Thus if
|B̂(Lold) − B(Lold)| < t · B̂(Lold), the preexisting partition of layers in Lold

will not be changed.
Otherwise layers in Lold are repartitioned depending on which of the fol-

lowing cases occurs:

• B(Lold) > (1 + t) · B̂(Lold): this means that the amount of storage space
currently invested to summarize layers in Lold is on the whole too large
(according to the adopted fair-distribution criterion); thus some layers in
Lold are repartitioned by means of a coarser-grain grid in order to release
some storage space;

• B(Lold) < (1−t)·B̂(Lold): in this case the storage space currently invested
to summarize Lold is increased, by repartitioning by means of a finer-grain
grid the layers in Lold which are the most in need of a finer partition.

In order to choose the layers to be repartitioned, for each layer L in Lold ,
B̂(L) = SSE(L)

SSE(L) · B is evaluated. The value of B̂(L) is a fair portion of the
available storage space to be assigned to L.

A layer L in Lold such that B(L) > B̂(L) is said to be indebted, in the sense
that it is assigned an amount of storage space larger than the amount it would
be assigned in a fair space distribution based on its relative inhomogeneity. So
it is “in debt” of some storage space to other layers. On the contrary, a layer
L such that B(L) < B̂(L) is said to be creditor, in the sense that it is assigned
an amount of storage space smaller than the one it would need according to
its SSE. That is, it is creditor of some storage space.

Consider the case that B(Lold) > (1 + t) · B̂(Lold) holds. Then, it is
straightforward to see that there is at least one indebted layer in Lold such
that B(L) > (1 + t) · B̂(L). Let L∗ be the most indebted layer in Lold . The
idea is to deprive L∗ of some storage space in order to make the overall space
consumed by layers in Lold closer to B̂(Lold). In particular, a portion of storage
space is stolen from B(L∗), which makes L∗ creditor of t

2 · B̂(L∗). Therefore,
the amount of storage space stolen from L∗ is:

B−(L∗) = B(L∗)−
(

1− t

2

)
·B̂(L∗).



132 4 Clustering-based Histograms

Then L∗ is repartitioned by investing the amount of storage space B(L∗)−
B−(L∗). If at the end of this step B(Lold) > B̂(Lold) still holds, then the
layer in Lold which is the most in debt is chosen and deprived of some
storage space, using the same strategy as above. This process goes on un-
til B(Lold) ≤ B̂(Lold). That is, layers which are “very much indebted” are
selected and made “pretty” in credit (a threshold value t/2 is used to esti-
mate that a layer is creditor in a small extent): this strategy aims at reaching
rapidly the condition B(Lold) ≤ B̂(Lold), by reducing the number of layers
to be repartitioned, which is mandatory for the efficiency requirements of the
incremental approach.

In the case that B(Lold) < (1−t)·B̂(Lold) an analogous approach is adopted:
the layer L∗ which is creditor of the largest amount of storage space is chosen
its storage space is increased by adding to it:

B+(L∗) =
(

1+
t

2

)
·B̂(L∗)−B(L∗),

which means making L∗ indebted of at most t
2 · B(L∗). Then L∗ is reparti-

tioned, and this procedure is reiterated on the other creditors in Lold until
B̂(Lold) ≥ B(Lold).

By means of experiments, the threshold value t = 20% has resulted in
preserving the accuracy of the updated histogram and effectively limiting the
number of layers to be repartitioned.

If a layer L ∈ Lold is chosen to be repartitioned (as it is creditor or indebted
in too large extent), the Layer value of the outliers which were summarized in
the buckets of L at some previous step is assigned the value −1. These outliers
will be considered for summarization into some bucket at the following step.

In the following, outliers whose Layer value is −1 will be said to be new
outliers, whereas outliers whose Layer value is greater than or equal to 0 will
be said to be old outliers.

Partitioning layers in Lnew . Layers L1, . . . , Lα in Lnew are partitioned
sequentially according to the same scheme adopted in the non-incremental
approach. The amount of storage space invested to partition layers in Lnew is
B(Lnew ) = SSE(Lnew )

SSE(L) · B. Then for each i ∈ [1..α], the layer Li is summa-
rized according to the grid-partitioning scheme described in Section 4.1.2 by
investing the amount of storage space:
B(Li) = Bi · SSE(Li)

SSE(L0)+
Pα

j=i SSE(Lj)
,

where B1 = B(Lnew ) and Bi is the portion of B(Lnew ) which is left from the
summarization of L1, . . . , Li−1.

Partitioning L0. Let B′ = B − B(Lnew ) − B(Lold) be the amount of
storage space which can be invested to summarize L0, i.e. the portion of B
which is left from summarizing layers in Lnew and Lold . L0 is repartitioned if
one of the following cases occurs:



4.3 Costs of the non-incremental and incremental approaches 133

1. B(L0) ≥ B′: this means that the current bucketization of L0 makes the
overall storage space consumption of the histogram exceed B, thus L0

must be repartitioned using a coarser-grain grid;
2. B(L0) ≤ (1 − t) · B′: this means that the space currently invested to

partition L0 is too small (according to the threshold t), thus L0 must be
repartitioned using a finer-grain grid.

If either case 1 or case 2 occurs, L0 must be repartitioned, thus a new grid
is defined on L0 (by investing the amount of storage space B − B(Lnew) −
B(Lold)). In this case both new and old outliers are scanned, and each outlier is
summarized either into a c-bucket or into an o-bucket, depending on whether
it lies into the range of some c-bucket or not.

Otherwise, if neither case 1 nor case 2 occurs, the existing grid-partitioning
of L0 is kept and the current summarization is updated as follows. First, the
new outliers are scanned and summarized into either a c-bucket or an o-bucket,
as for the previous case. Then, the buckets of L0 are deprived of the outliers
which lie into the range of some newly created c-bucket.

Details on how these tasks are accomplished in the implementation are
given in Section 4.3.

4.2.3 Step III: rearrangement of buckets

The task accomplished at this step consists in applying the same physical
representation scheme as the non-incremental approach to the set of buckets
resulting from Step II. The up-to-date histogram consists of buckets of four
types: 1) c-buckets resulting from partitioning layers in Lnew , 2) c-buckets
resulting from repartitioning selected layers in Lold , 3) c-buckets inherited
from the previous histogram which refer to layers in Lold which have not been
repartitioned, 4) o-buckets partitioning L0 (these buckets can result either
from updating the o-buckets of the previous histogram or from repartitioning
L0). The preexisting arrangement of buckets is not exploited to rearrange new
buckets, as this does not result in a relevant overhead. In fact all the opera-
tions needed to accomplish this task are performed in main memory (where
the new bucketization is stored), without accessing disk-resident data.

The algorithm implementing steps I to III is shown in Fig. 4.8.

4.3 Costs of the non-incremental and incremental
approaches

The difference in the number of disk accesses between the two approaches is
due to two reasons. First, the adoption of the incremental clustering, which
is likely to result in much fewer disk accesses w.r.t. the non-incremental one.
Secondly, the strategy adopted at Step II, which aims at limiting the number of
layers to be repartitioned, avoiding rescanning the whole data. As regards the



134 4 Clustering-based Histograms

INPUT D: a multi-dimensional data distribution;
B: available amount of storage space for representing

the histogram;
H: the histogram currently built on D;
u: the bulk of updates to be propagated to H;

OUTPUT H ′:an up-to-date histogram on D within B;

begin
〈Lold ,Lnew , L0〉 := IncrementalDBSCAN(H, D, u);
Partitioned=∅;
NewBuckets=∅;bB(Lold ) = SSE(Lold )

SSE(L)
· B;

B(Lold ) =
P

L∈Lold
B(L);

if ( B(Lold ) ≥ (1 + t) · bB(Lold ) ) then begin

while ( B(Lold) ≥ (1 + t) · bB(Lold ) ) do begin
L = SelectMostIndebted(Lold);
Partitioned=Partitioned ∪ L;

B(L) = (1− t
2
)· SSE(L)

SSE(L)
·B;

NewBuckets= NewBuckets ∪ GridPartition( L, B(L) );
endwhile

elsif ( B(Lold ) ≤ (1 − t) · bB(Lold ) ) then begin

while ( B(Lold ) ≤ (1 − t) · bB(Lold ) ) do begin
L = SelectMostCreditor(Lold );
Partitioned=Partitioned ∪ L;

B(L) = (1+ t
2
)· SSE(L)

SSE(L)
·B;

NewBuckets= NewBuckets ∪ GridPartition(L, B(L));
end while

endif ;
Lold = Lold − Partitioned;
for ( L ∈ Lnew ) do begin

B(L) = L.SSE
L0.SSE+SSE(Lnew )

· (B − size(Partitioned) − size(Lold));

NewBuckets= NewBuckets ∪ GridPartition(L, B(L));
Partitioned=Partitioned ∪ L;

endfor;
B′ = B − size(Partitioned) − size(Lold);
if ( B(L0) ≤ B′ AND B(L0) ≥ (1−t) · B′ ) then begin

O-Buckets= H.O-Buckets;
DistributeNewOutliers(NewBuckets, O-Buckets);
MoveOutliers(NewBuckets, O-Buckets);

else begin
newSize = B − size(Partitioned) − size(Lold);
O-Buckets= PartitionAndDistribute(L0, newSize,NewBuckets);

endif ;
H ′ =Assemble(NewBuckets ,UnchangedBuckets(H,Lold ),O-Buckets);
return H ′;

end

Fig. 4.8. Incremental CHIST algorithm



4.3 Costs of the non-incremental and incremental approaches 135

former aspect, the extent of the benefit introduced by the use of an incremental
clustering approach strictly depends on the particular clustering algorithm
invoked. In the case of DBSCAN, no simple formula is known to provide the
speedup factor corresponding to the use of its incremental version, thus the
speedup must be determined experimentally.

As regards the second aspect, the number of disk accesses can be com-
pared as follows. In the non incremental approach, after accomplishing the
clusterization, a region query must be posed corresponding to the MBR of
each detected dense cluster to partition it according to the grid; then, the list
of outliers must be scanned to distribute them among c-buckets and o-buckets.
Thus, denoting the number of dense clusters as c, the number of data points
as N and the number of pages containing outliers as Out, the number of disk
accesses is O(c · logN + Out) (it is assumed that a multi-dimensional index
enabling region queries to be answered with logN accesses is maintained, as
well as an inverted index of the pages containing outliers). As regards the
incremental approach, let c′ be the number of clusters which need to be par-
titioned, OldOut the number of pages containing the old outliers and NewOut
the number of pages containing the new outliers. It is necessary to pose c′ re-
gion queries to partition the dense clusters and NewOut pages pages have to be
scanned in order to distribute the new outliers among c-buckets and o-buckets.
Moreover, if it is the case that L0 must be repartitioned, OldOut pages have
to be scanned in order to repartition it and possibly adsorb old outliers into
new c-buckets. Otherwise, if L0 does not need repartitioning, only bnew re-
gion queries must be posed on the set of old outliers to possibly adsorb some
of them into new c-buckets (bnew denotes the number of the new c-buckets).
Therefore, the overall number of disk accesses is O(c′ · logN + NewOut +X),
where X is either bnew · log OldOut (if L0 is not repartitioned) or OldOut (if
L0 must be repartitioned). Observe that in order to support the incremental
approach an inverted index is also maintained on the newly detected outliers
(which allows us to scan all the new outliers by means of NewOut accesses) as
well as a multi-dimensional index to answer region queries on old outliers with
log Out accesses. Notice that in the worst case NewOut + X = Out (in the
non-incremental approach there is no distinction between new and old out-
liers, thus Out = NewOut + OldOut), but in the case that the outlier layer is
not repartitioned NewOut +X can be reasonably assumed much smaller than
Out. Moreover c′ can be assumed much smaller than c. Therefore if the num-
ber of outliers is “small” w.r.t. the whole data size, then the adoption of the
incremental strategy always results in a relevant benefit, otherwise the extent
of this benefit depends on the probability that L0 must be repartitioned.

The latter issue cannot be investigated but experimentally, as well as the
speedup due due adoption of the incremental clustering strategy. Therefore
in the following section an experimental analysis of the overall benefit of the
incremental approach will be provided.



136 4 Clustering-based Histograms

4.4 Experimental analysis

This section analyzes the performances of the proposed clustering-based his-
togram construction. The accuracy of query estimates is measured and com-
pared to the accuracy yielded by the GHBH technique, proposed in the pre-
vious chapter, that has been shown to outperform the state-of-the-art tech-
niques. Then, experiments testing the effectiveness of the incremental ap-
proach, comparing it with the from-scratch execution of CHIST are presented.

4.4.1 Comparing CHIST with GHBH

In this section some experimental results are presented, comparing the ac-
curacy of estimating query selectivity by means of CHIST with GHBH. The
experiment were conducted on both synthetic and real-life data. Synthetic
data were obtained by adopting the same generator described in Section 3.9.1.
However, in Section 3.9.6 only a 8 × 16 × 256 × 1024 data distribution has
been considered, on which GHBH yields very accurate estimates (20% aver-
age relative error in the most difficult setting). In that context “easy” data
distribution were studied because, otherwise, the other techniques, especially
wavelet-based ones, would have yielded too high errors, and the comparison
would have not been meaningful. In this case, as only CHIST and GHBH will
be compared, the accuracy of the techniques can be compared on synthetic
data more difficult to be summarized (i.e. data consisting of a larger number
of tuples defined on a larger data domain and with a higher dimensionality).

As regards experiments on real-life data, Forest Cover (see Section 3.9.2)
has been considered. Specifically, in the following FC10 will denote the 10-
dimensional data distribution already described in Section 3.9.2, and FC5 will
denote the projection of these data on the five attributes with the largest
domain.

Diagrams (a, b) in Fig. 4.9 refer to a 4-dimensional synthetic data (n=
1000; T = 100 000; r = 100; zmin= 0.5; zmax= 2.5; lmin= 30; lmax= 200),
whereas Diagrams (c, d) refer to an 8-dimensional synthetic data (d=8; n=
1000; T =200 000; r=200; zmin= 0.5; zmax= 2.5; lmin= 30; lmax= 200). In
both cases the DBSCAN parameters have been set as MinPts= 4 and Eps= 4.
Observe that the differences in accuracy gets smaller as either the available
storage space or the query selectivity increases. This is mainly due to the
fact that both techniques perform very well for both large available storage
space and large query selectivity. The difference between the two techniques
is more relevant when the available storage space is very small. In this case,
GHBH, which adopt a top-down partitioning strategy, find difficult reaching
all the dense regions of data, thus some of them are summarized together with
sparse ones. This explain also why the differences are more relevant also for
low selectivities, where the homogeneity of each single bucket is more relevant
than in larger queries.



4.4 Experimental analysis 137

�
CHIST

�
GHBH

Selectivity= 0.4 % N. of buckets = 2000
50

25

0

400020001000500

Storage space (n. of words)

�

�

�

�

�

�

�

�

50

25

0

6.41.60.40.1

Selectivity %

�

�

�

�

�

�

�

�

(a) (b)

Selectivity= 0.4 % N. of buckets = 2000
70

35

0

400020001000500

Storage space (n. of words)

�

�

�

�

�

�
�

�

70

35

0

6.41.60.40.1

Selectivity %

�

�

�

�

�

�

�

�

(c) (d)

Fig. 4.9. Accuracy of techniques on 4D (a, b) and 8D (c, d) synthetic data

Diagrams (a, b) in Fig. 4.10 were obtained on FC5, whereas diagrams (c,
d) refer to FC10 (in these cases, the adopted parameters for DBSCAN were
MinPts= 4 and Eps= 25). The same differences between the two techniques,
already observed for synthetic data, has been noticed in these experiments.

4.4.2 Efficiency of the incremental approach

In this section the effectiveness of the incremental approach is compared with
the from scratch execution of CHIST . To this end, given a multi-dimensional
data distribution D, bulks of updates are simulated as follows. First, a distri-
bution D′ is generated on the same domain and using the same data generator
as D. Then a bulk of insertions on D is created by randomly extracting some
points from D′. The idea of extracting points from D′ to be inserted into
D is that this allows us to simulate both the creation of new dense clusters
and new outliers in D. Deletions on D consist of randomly selected points of
D. Thus a bulk of updates is a set of insertions and deletions, generated as
explained above. For a bulk of updates u, the percentage of insertions in u
will be denoted as pu.



138 4 Clustering-based Histograms

�
CHIST

�
GHBH

Selectivity= 0.1 % Storage space = 8000 words
30

20

10

8000400020001000

Storage space (n. of words)

�

�

�

�

�

�

�

�

30

20

10

0.10.080.060.040.02

Selectivity %

�

�
�

�
�

�

�

�
�

�

(a) (b)

Selectivity= 0.1 % Storage space = 8000 words
35

25

15

8000400020001000

Storage space (n. of words)

�
�

�
�

�
�

�

�

40

30

20

0.10.080.060.040.02

Selectivity %

�

�
�

�
�

�

�
�

�
�

(c) (d)

Fig. 4.10. Accuracy of techniques on FC5 (a, b) and FC10 (c, d) real-life data

Diagrams in Fig. 4.11(a,b) refer to a 4D data distribution of size 1 0004,
while diagrams in Fig. 4.11 (d,e) refer to an 8D data distribution of size 10008.

Fig. 4.11 (a,c) shows the speedup due to the use of Incremental CHIST
versus the size of updates (expressed as percentage of the data size) on a 4D
and a 8D synthetic data distribution, respectively. For a bulk of updates u, the
speedup is the ratio N. of pages accessed by CHIST

N. of pages accessed by Incremental CHIST . Fig. 4.11 (a,c) show
that the benefit of using the incremental approach is very relevant (in both
cases a speedup value of about 200 for update size of 1% has been achieved).
As expected, the speedup decreases as the size of the updates gets larger.
Observe that the speedup depends also on the type of updates: the larger
the percentage of insertions, the higher the speedup. This is in accordance
with [39], where it was observed that deletions on the average result in more
complex changes of the clusterization, as they involve a larger number of
preexisting clusters than insertions.

Diagrams in Fig. 4.11 (b,d) study the accuracy of the incremental ap-
proach, compared with that of the non-incremental one. They depict the ratio
e = eni

ei
between the relative errors provided by the non-incremental approach



4.4 Experimental analysis 139

�
pu = 95%

�
pu = 90%

�
pu = 75% �pu = 50%

275

200

125

50

4.53.52.51.50.5

Update size %

�

�

�
�

�

�

�

�
� �

�

�
�

� �

�
� � � �

1

0.75

0.5
4.53.52.51.50.5

Update size %

� � � � �
� �

� � �

�
� �

� �
� � � � �

(a) (b)

275

200

125

50

4.53.52.51.50.5

Update size %

�

�

�
� �

�

�

�
� �

�

�
�

� �

�
� � � �

1

0.75

0.5
4.53.52.51.50.5

Update size %

� � � � �
� � � � �
� �

� � �

� � � � �

(c) (d)

Fig. 4.11. Speedup and accuracy variation on 4D (a, b) and 8D (c,d) synthetic
data

(i.e. eni) and and the incremental one (i.e. ei) versus the size of updates. Ex-
periments were conducted using 2000 buckets and on two workloads of 50000
queries of selectivity between 0.4% and 0.6%. Fig. 4.11 (b,e) show that the ra-
tio eni

ei
is close to 1 and is almost unaffected by the size of updates. This means

that the adoption of the incremental approach does not result in degrading
accuracy w.r.t. the non-incremental one.





Conclusions

In this thesis the problem of effectively summarizing multi-dimensional data
as support for several application contexts has been investigated. Some of
these contexts are selectivity estimation of range predicates for supporting
query optimization, efficient exploratory data analysis in OLAP applications,
window queries in spatial databases, and load balancing for parallel query
execution. All these application scenarios require to efficiently estimate range
queries over some data distribution. Data summarization has been widely
accepted as the main solution to efficiently estimate range queries, especially
on large amounts of data. A wide overview of several existing techniques for
data summarization has been presented. All those techniques, more or less
dramatically, incur in the curse of dimensionality, thus yielding poor accuracy
in estimates as the dimensionality of summarization data becomes larger,
unless the estimates are made less efficient.

An effort towards an improvement of existing histogram-based summariza-
tion techniques, which is particularly significant in the high-dimensionality
settings, has been proposed in this thesis.

The greatest problem in approximating multi-dimensional data by means
of histograms is the construction of buckets summarizing together dense and
sparse regions of the data domain, thus obtaining buckets containing very
skewed data distributions, which can not be approximated by a summary
information with acceptable accuracy. There are two reasons why this could
happen:

1. the space bound is too small for enabling to isolate the dense regions by
means of a top-down iterative splitting strategy;

2. the splitting strategy itself could be ineffective in directing the splitting
towards the isolation of dense regions;

The former is an intrinsic problem of all the techniques which base the data
domain partition on a hierarchical strategy. The problem can be partially over-
come by adopting an efficient representation model enabling a larger number
of buckets to be constructed within the storage space bound. To this aim, the



142 Conclusions

hierarchical partition paradigm has been exploited to make the representation
of buckets more efficient w.r.t. the traditional “flat” representation scheme
adopted by classical histograms. Two new classes of histograms based on hier-
archical binary partitions have been proposed, namely HBH and GHBH. Both
represent the partition by means of a very compact bit-string representing a
binary tree corresponding to the binary space partition. This representation
can be viewed as a form of lossless compression applied on top of the common
lossy compression on which histograms are based. GHBH differs from HBH as
it adopts a grid-constrained hierarchical partition, where splits partitioning
any block of data must be laid onto a grid dividing the block into a fixed num-
ber of sub-blocks with equal size. The space-efficient physical representation
model enables HBH and GHBH to store a larger number of buckets within the
same storage space bound which enables more accurate estimations than the
traditional MBR-based representation model. In fact, even though the MBR
(minimum bounding rectangle) can describe more accurately the actual data
distribution inside each bucket, it requires a storage space to be represented
which could be invested to construct a larger number of less accurate buckets.
From experiments, it resulted that accuracy provided by a larger number of
less accurate buckets overwhelm that provided by a smaller number of more
accurate buckets.

However, the advantage of a larger number of buckets is actually relevant
only if the strategy adopted to construct them is effective. In fact, if the split-
ting strategy is not effective in directing the splitting towards the isolation
of dense regions, more buckets could not yield significant benefits. Since con-
structing the optimal histogram (i.e., the histogram minimizing a non-trivial
measure of the error within a storage space bound) is practically infeasible,
several heuristics for guiding a greedy algorithm have been investigated. A
new heuristic performing definitely better than other ones, comprehending
some well known heuristics previously proposed in literature, has been found
to effectively drive the data domain partitioning to isolate dense from sparse
regions, without requiring a more expensive computational cost.

By means of experiments, GHBH has been shown to outperform other
state-of-the-art techniques, such as MHIST, Min-Skew, GENHIST, and other
wavelet-based ones. The differences in accuracy result more and more evi-
dent as the dimensionality increases, as the number of buckets required to
accurately summarize data increases (thus the benefits of the space-efficient
representation model becomes more evident) as well as the difficulty in isolat-
ing dense regions in more and more skewed data (as it usually happens when
the number of dimensions increases, thus enlarging the differences between a
good and a poor heuristics guiding the partitioning). Moreover, it has been
shown that the GHBH construction times does not depends on the heuristic,
and that the larger number of buckets does not slow down query estimates,
as their hierarchical organization enables to efficiently access them.

The proposal of GHBH might issue new research challenges in the direc-
tion of improving histograms construction techniques by exploiting the value



Conclusions 143

of lossless-compression-based representation models for storing histograms.
Indeed, the proposed specific compression paradigm, as it exploits the hierar-
chical scheme adopted to construct the histogram, cannot be used to enhance
the physical representation of different classes of histogram, such as wavelet-
based ones, as well as techniques like GENHIST, which enables bucket over-
lapping. Therefore it would be interesting to design ad-hoc compression-based
representation models which are suitable for other summarization techniques,
and thus to investigate more generally the value of compression in the context
of approximate data structures.

Despite GHBH represents a significant improvement within the class of
histograms based on hierarchical binary partitions, as remarked before, there
is an intrinsic problem affecting all the techniques which base the data domain
partitioning on a hierarchical strategy and making the curse of dimensional-
ity persist. In fact, even the space-efficient representation paradigm, jointly
with the most effective partition strategy, could be not suitable to accurately
approximate data defined over large multi-dimensional domains, as the top-
down strategy could require an excessive number of splits to isolate all the
dense regions. The opposite strategy, i.e. the bottom-up one, seems to be the
only choice in those situations. The idea of partitioning data by means of a
bottom-up approach, which starts from small regions and progressively ag-
gregate data in larger and larger regions, have not found wide application
in histogram-based compression techniques. GENHIST, generally considered
the state-of-the-art in compression techniques, is the most known technique
adopting this strategy.

The problem of isolating dense regions, however, has been widely stud-
ied in the data mining context, specifically in the data clustering problem.
In this thesis, an approach which is based on the exploitation of a clustering
algorithm for locating dense regions before partitioning them has been intro-
duced. This solution, obviously avoid the problem of summarizing dense and
sparse regions together, as dense and spare regions are summarized separately.
The proposed technique, namely CHIST , exploits the well known DBSCAN
algorithm. DBSCAN has been chosen instead of other techniques as it is
considered the most effective in isolating dense regions. Clusters obtained by
DBSCAN are considered as layers, and each layer is partitioned separately
by means of a regular grid. More general partitioning schemes, such that pro-
posed by GHBH have not been adopted since layers defined by DBSCAN
are likely to be already quite homogeneous. In addition, a grid partitioning
can be computed more efficiently, and this represent a significant advantage
especially in the case of incremental maintenance of the histogram, which has
proposed to make CHIST suitable also for approximating evolving data sets.
In this case, the incremental maintenance of the histogram is based on the
Incremental DBSCAN algorithm. The estimate accuracies yielded by CHIST
have been compared to those yielded by GHBH. CHIST has been found to per-
form better than GHBH, when query selectivity are particularly small or the
compression ratio is very high. This is due mainly to the difficulty of the top-



144 Conclusions

down approach in locating dense region which becomes particularly evident
when the storage space bound is “quite” low or the query is defined of a range
with size much smaller than the average size of the histogram buckets. How-
ever, in these “difficult” settings, GHBH still provides acceptable error rates,
while other techniques provide estimates which are completely unacceptable.
The effectiveness of the incremental approach has been tested, showing that it
enables to achieve a relevant speedup factor w.r.t. the from-scratch histogram
construction and that its adoption preserves accuracy as data changes.

Future work on CHIST will be devoted to investigating how other cluster-
ing techniques can be embedded into the scheme of general CHIST algorithm,
and how their adoption affects both the accuracy and the construction time of
histogram. Even though DBSCAN is very effective in locating dense regions,
there are two main problems related to its adoption:

• DBSCAN is a parametric technique. Setting its parameters could re-
sult quite difficult. Even though CHIST performances have not resulted
strongly affected by DBSCAN parameters as long as DBSCAN manage
in isolating dense regions, completely wrong parameters could make DB-
SCAN find no dense regions or too many dense regions, thus annihilating
the advantages of CHIST w.r.t. other techniques.

• the time complexity of DBSCAN is O(Nz logNz), where Nz is the number
of tuples to be processed, when efficient indexing techniques are available.
As at high dimensionality the curse of dimensionality makes indexing tech-
niques inefficient (finding an efficient multi-dimensional indexing technique
for high-dimensionality settings is still an open problem), the complexity
becomes O(Nz

2), which could become too heavy for large data sets.

Two approaches seem promising in order to overcome the first problem:

1. studying estimation techniques for effective DBSCAN parameters on the
basis of the overall data distribution density and storage space bound;

2. adopting OPTICS instead of DBSCAN. OPTICS performs an ordering
of tuples which subsequently enables to quickly find the clusters that DB-
SCAN would find on the basis of several different parameters. Interest-
ingly, OPTICS can be used to define hierarchical clustering, which in turn
can be adopted to define overlapping buckets with increasing size and de-
creasing density. In this case, kernel estimators [129] are likely to provide
better performances w.r.t. the classical uniform distribution assumption
inside buckets on which classical histograms are based.

Results in these two directions could enable overcoming only the problem
related to the choice of the parameters. As regards the problem related to the
complexity of the clustering operation, some ideas which could be developed
are the following:

1. performing the summarization during the clustering operation and de-
creasing the clustering execution cost by accepting less accurate clusters.



Conclusions 145

Indeed, DBSCAN provides an accuracy which is unnecessary in the con-
text on data summarization. In fact, the exact shape of clusters is not
necessary, as they are later partitioned according to their MBR, which is
a simple hyper-rectangle. The straightforward approach based on consid-
ering the cluster MBR during its construction, and adding all the points
within the MBR to the cluster has been found to perform poorly, as it
yields too large buckets with low density and high inhomogeneity. A possi-
bility could be defining a technique similar to DBSCAN, which instead of
clusters creates buckets starting from points with dense neighborhood and
enlarging their MBRs until a measure of their homogeneity is maintained
within some threshold.

2. exploiting data dimensionality reduction techniques, such as those based
on statistical interaction models. This solution would avoid the problems
due to high data dimensionality. However, this approach could be also used
with other compression-techniques, and would not be specifically targeted
to clustering-based histograms.

Of course, several other not mentioned approaches could be suitable, and
may be that among those there is the most effective one. However, it is not
uncommon in research that starting a study even towards a “not-so-correct”
direction makes understand where actually the solution of the problem is
hidden.





References

1. Aboulnaga A. and Chaudhuri S., Self-tuning histograms: building histograms
without looking at data, Proceedings of 1999 ACM SIGMOD International
Conference on Management of Data (SIGMOD 1999): 181-192, June 1-3, 1999,
Philadelphia (PA), USA.

2. Acharya S., Gibbons P. B., Poosala V., and Ramaswamy S., Join synopses for
approximating query answering, Proceedings of 1999 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD 1999): 275-286, June
1-3, 1999, Philadelphia (PA), USA.

3. Acharya S., Poosala V., and Ramaswamy S., Selectivity estimation in spatial
databases, Proceedings of 1999 ACM SIGMOD International Conference on
Management of Data (SIGMOD 1999): 13-24, June 1-3, 1999, Philadelphia
(PA), USA.

4. Ahrens J. H. and Dieter U., Sequential random sampling, ACM Transactions
on Mathematical Software (TOMS), 11(2): 157-169, June, 1985.

5. Alsabti K., Ranka S, and Singh V., A one-pass algorithm for accurately esti-
mating quantiles for disk-resident data, Proceedings of 23rd International Con-
ference on Very Large Data Bases (VLDB 1997): 346-355, August 25-29, 1997,
Athens, Greece.

6. Ankerst M., Bruenig M. M., Kriegel H. P., and Sander J., OPTICS: ordering
points to identify the clustering structure, Proceedings of 1999 ACM SIGMOD
International Conference on Management of Data (SIGMOD 1999): 49-60,
June 1-3, 1999, Philadelphia (PA), USA.

7. Barbarà D., Du Mouchel W., Faloutsos C., Haas P. J., Hellerstein J. M., Ioan-
nidis Y. E., Jagadish H. V., Johnson T., Ng R., Poosala V., Ross K. A., and
Sevcik K. C., The New Jersey data reduction report, IEEE Data Engineering
Bulletin, 20(4): 3-45, December 1997.

8. Beniger J. R. and Robyn D. L., Quantitative graphics in statistics: a brief
history, The American Statistician, 32(1):1-11, February 1978.

9. Blohsfeld B., Korus D., and Seeger B., A comparison of selectivity estimators
for range queries on metric attributes, Proceedings of 1999 ACM SIGMOD
International Conference on Management of Data (SIGMOD 1999): 239-250,
June 1-3, 1999, Philadelphia (PA), USA.

10. Bradley P. S., Fayyad U. M., and Reina C., Scaling clustering algorithms to
large databases, Proceedings of 4th International Conference on Knowledge



148 References

Discovery and Data Mining (KDD 1998): 9-15, August 27-31, 1998, New York
City (NY), USA.

11. Bruno N., Chaudhuri S., and Gravano L., STHoles: a multi-dimensional work-
load aware histogram, Proceedings of 2001 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2001): 211-222, May 21-24, 2001,
Santa Barbara (CA), USA.

12. Buccafurri F., Furfaro F., and Saccà D., Estimating range queries using ag-
gregate data with integrity constraints: a probabilistic approach, Proceedings
of 8th International Conference on Database Theory (ICDT 2001): 390-404,
January 4-6, 2001, London, UK.

13. Buccafurri F., Rosaci D., Pontieri L., and Saccà D., Improving Range Query
Estimation on Histograms, Proceedings of 18th International Conference on
Data Engineering (ICDE 2002): 628-638, February 26-March 1, 2002, San Jose
(CA), USA.

14. Buccafurri F., Furfaro F., Lax G., and Saccà D., Binary-Tree Histograms with
Tree Indices, Proceedings of 13th International Conference on Database and
Expert Systems Applications (DEXA 2002): 861-870, September 2-6, 2002, Aix-
en-Provence, France.

15. Buccafurri F., Furfaro F., Saccà D., and Sirangelo C., A Quad-Tree Based
Multiresolution Approach for Two-dimensional Summary Data, Proceedings of
15th International Conference on Scientific and Statistical Database Manage-
ment (SSDBM 2003): 127-137, 9-11 July, 2003, Cambridge (MA), USA.

16. Cardenas A. F., Evaluation and selection of file organization - A model and
system, Communications of the ACM, 16(9): 540-548, September 1973.

17. Cardenas A. F., Analysis and performance of inverted database structures.
Communications of the ACM, 18(5): 253-263, May 1975.

18. Chamberlin D. D. and Boyce R. F., SEQUEL: a structured english query lan-
guage, Proceedings of 1974 ACM-SIGMOD Workshop on Data Description,
Access and Control (SIGFIDET/SIGMOM 1974), Vol 1: 249-264, May 1-3,
1974, Ann Arbor (MI), USA.

19. Chakrabarti K., Garofalakis M., Rastogi R., and Shim K., Approximate query
processing using wavelets, Proceedings of 26th International Conference on
Very Large Data Bases (VLDB 2000): 111-122, 10-14 Sept, 2000, Cairo, Egypt.

20. Chakrabarti K., Garofalakis M., Rastogi R., and Shim K., Approximate query
processing using wavelets, The VLDB Journal, 10(2-3): 199-223, 2001.

21. Chaudhuri S. and Dayal U., An overview of data warehousing and OLAP
technology, SIGMOD RECORD, 26(1): 65-74, March 1997.

22. Chaudhuri S., An overview of query optimization in relational systems, Pro-
ceedings of 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS 1998): 34-43, June 1-3, 1998, Seattle (WA), USA.

23. Chaudhuri S., Motwani R., and Narasayya V., Random sampling for histogram
construction: how much is enough?, Proceedings of 1998 ACM SIGMOD Inter-
national Conference on Managment of Data (SIGMOD 1998): 436-447, June
2-4, 1998, Seattle (WA), USA.

24. Chaudhuri S. and Gravano L., Evaluating top-k selection queries, Proc. of 25th
International Conference on Very Large Data Bases (VLDB 1999): 397-410,
September 7-10, 1999, Edinburgh, UK.

25. Chen C. M. and Roussopoulos N., Adaptive selectivity estimation using query
feedback, Proceedings of 1994 ACM SIGMOD International Conference on



References 149

Managment of Data (SIGMOD 1994): 161-172, May 24-27, 1994, Minneapolis
(MN), USA.

26. Cheung T.-Y., Estimating block accesses and number of records in file manag-
ment. Communication of the ACM, 25(7): 484-487, July 1982.

27. Christodoulakis S., Estimating selectivities in data bases, PhD Thesis, CSRG-
136, Computer System Research Group, University of Toronto, Canada.

28. Christodoulakis S., Estimating record selectivities, Information Systems, 8(2):
105-115, 1983.

29. Christodoulakis S., Estimating block transers and join sizes, Proceedings of
1983 ACM SIGMOD International Conference on Managment of Data (SIG-
MOD 1983): 40-54, May 23-26, 1983, San Jose (CA), USA.

30. Christodoulakis S., Estimating block selectivities, Information systems, 9(1):
69-79, 1984.

31. Christodoulakis S., Implications of certain assumptions in database perfor-
mance evaluation, ACM Transactions on Database Systems (TODS), 9(2): 163-
186, June 1984.

32. Codd E. F., A relational model of data for large shared data banks, Commu-
nications of the ACM, 13(6): 377-387, June 1970.

33. Comer D., The ubiquitous B-Tree, Computing Surveys: 11(2): 121-137, June
1979.

34. Deligiannakis A., Garofalakis M. N., and Roussopoulos N., A fast approxi-
mation scheme for probabilistic wavelet synopses, Proceedings of 17th Interna-
tional Conference on Scientific and Statistical Database Management (SSDBM
2005): 243-252, 27-29 June, 2005, Santa Barbara (CA), USA.

35. Deshpande A., Garofalakis M., and Rastogi R., Independence is good:
dependency-based histogram synopses for high-dimensional data, Proceedings
of 2001 ACM SIGMOD International Conference on Managment of Data (SIG-
MOD 2001): 199-210, May 21-24, 2001, Santa Barbara (CA), USA.

36. Donjerkovic D. and Ramakrishnan R., Probabilistic optimization of top N
queries, Proc. of 25th International Conference on Very Large Data Bases
(VLDB 1999): 411-422, September 7-10, 1999, Scotland, UK.

37. Eckart C. and Young G., The approximation of one matrix by another of lower
rank, Psychometrika, 1(3): 211-218, September 1936.

38. Ester M., Kriegel H. P., Sander J., and Xu X., A density-based algorithm
for discorvering clusters in large spatial databases with noise, Proceedings of
2nd International Conference on Knowledge Discovery and Data Mining (KDD
1996): 226-231, August 2-4, 1996, Portland (OR), USA.

39. Ester M., Kriegel H. P., Wimmer M., and Xu X., Incremental clustering for
mining in a data warehousing environment, Proceedings of 24th International
Conference on Very Large Data Bases (VLDB 1998): 323-333, August 24-27,
1998, New York City (NY), USA.

40. Fan C. T., Muller M. E., and Rezucha I., Development of sampling plans by
using sequential (item by item) selection techniques and digital computers,
Journal of the American Statistical Association, 57(298): 387-402, June 1962.

41. Fedorowicz J. E., A zipfian model of inverted file storage requirements, Pro-
ceedings of 12th Annual Pittsbusgh Conference on Modeling and Simulation:
1393-1399, Apr 30-May 2, 1981, Pittsburgh (PA), USA.

42. Fedorowicz J. E., A zipfian model of an automatic bibliographic system: an
application to MEDLINE, Journal of the American Society for Information
Science, 33(4): 223-232, July 1982.



150 References

43. Fedorowicz J. E., Database evaluation using multiple regression techniques,
Proceedings of 1984 ACM SIGMOD International Conference on Managment
of Data (SIGMOD 1984): 70-76, June 18-21, 1984, Boston (MA), USA.

44. Furtado P. and Madeira H., Summary GRIDS: building accurate multidimen-
sional histograms, Proceedings of 6th International Conference on Database
Systems for Advanced Applications (DASFAA 1999): 187-194, April 19-21,
1999, Hsinchu, Taiwan.

45. Garofalakis M. and Gibbons P. B., Wavelet synopses with error guarantees,
Proceedings of 2002 ACM SIGMOD International Conference on Managment
of Data (SIGMOD 2002): 476-487, June 3-6, 2002, Madison (WI), USA.

46. Garofalakis M. and Gibbons P. B., Probabilistic wavelet synopses, ACM Trans-
actions on Database Systems (TODS), 29(1): 43-90, March 2004.

47. Garofalakis M. and Kumar A., Deterministic wavelet thresholding for
maximum-error metrics, Proceedings of 23rd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 2004): 166-
176, June 14-16, 2004, Paris, France.

48. Garofalakis M. and Kumar A., Wavelet synopses for general error metrics,
ACM Transactions on Database Systems (TODS), 30(4): 888-928, December
2005.

49. Gibbons P. B. and Matias Y., New sampling-based summary statistics for
improving approximate query answers, Proceedings of 1998 ACM SIGMOD
International Conference on Managment of Data (SIGMOD 1998): 331-342,
June 2-4, 1998, Seattle (WA), USA.

50. Gilbert A. C., Kotidis Y., Muthukrishnan S., and Strauss M. J., Optimal and
approximate computation of summary statistics for range aggregates, Proceed-
ings of 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 2001), May 21-23, 2001, Santa Barbara (CA), USA.

51. Gould P. R., Letting the data speak for themselves, Annals of the Association
of American Geographers, 71(2): 166-176, June 1981.

52. Gray J., Bosworth A., Layman A., and Pirahesh H., Data cube: a relational ag-
gregation operator generalizing group-by, cross-tab, and sub-total, Proceedings
of 12th International Conference on Data Engineering (ICDE 1996): 152-159,
February 26-March 1, 1996, New Orleans (LA), USA.

53. Gray J., Chaudhuri S., Bosworth A., Layman A., Reichart D., Venkatrao M.,
Pellow F., and Pirahesh H.: Data cube: a relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-total, Data Mining and Knowledge Dis-
covery, 1(1): 29-53, March 1997.

54. Guha S., Rastogi R., and Shim, K., CURE: An efficient clustering algorithm for
Large Databases, Proceedings of 1998 ACM SIGMOD International Conference
on Managment of Data (SIGMOD 1998): 73-84, June 2-4, 1998, Seattle (WA),
USA.

55. Guha S., Shim K, and Woo J., REHIST: relative error histogram construction
algorithms, Proceedings of 30th International Conference on Very Large Data
Bases (VLDB 2004): 300-311, August 31-September 3, 2004, Toronto, Canada.

56. Gunopulos D., Kollios G., Tsotras V. J., and Domeniconi C., Approximating
multi-dimensional aggregate range queries over real attributes, Proceedings of
2000 ACM SIGMOD International Conference on Managment of Data (SIG-
MOD 2000): 463-474, May 14-19, 2000, Dallas (TX), USA.



References 151

57. Gunopulos D., Kollios G., Tsotras V. J., and Domeniconi C., Selectivity es-
timators for multidimensional range queries over real attributes, The VLDB
Journal, 14(2): 137-154, April 2005.

58. Haas P. J. and Swami A. N., Sequential sampling procedures for query size
estimation, Proceedings of 1992 ACM SIGMOD International Conference on
Managment of Data (SIGMOD 1992): 341-350, June 2-5, 1992, San Diego
(CA), USA.

59. Haas P. J. and Hellerstein J. M., Ripple joins for online aggregation, Proceed-
ings of 1999 ACM SIGMOD International Conference on Management of Data
(SIGMOD 1999): 287-298, June 1-3, 1999, Philadelphia (PA), USA.

60. Harinarayan V., Rajaraman A., and Ullman J. D., Implementing data cubes
efficiently, Proceedings of 1996 ACM SIGMOD International Conference on
Managment of Data (SIGMOD 1996): 205-216, June 4-6, 1996, Montreal,
Canada.

61. Heising W. P., Note on random addressing techniques. IBM System Journal :
2(2): 112-116, June 1963.

62. Hellerstein J. M., Haas P. J., and Wang H. J., Online aggregation, Proceed-
ings of 1997 ACM SIGMOD International Conference on Managment of Data
(SIGMOD 1997): 171-182, May 13-15, 1997, Tucson (AZ), USA.

63. Hill E., Analysis of an inverted data base structure, Proceedings of 1978 In-
ternational Conference on Information Storage and Retrieval (SIGIR 1978):
37-64, May 10-12, 1978, Rochester (NY), USA.

64. Hou W.-C., Ozsoyoglu G., and Taneja B. K., Statistical estimators for re-
lational algebra expessions, Proceedings of 7th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 1988): 276-
287, March 21-23, 1988, Austin (TX), USA.

65. Hou W.-C., Özsoyoglu G., Dogdu E, Error-constraint COUNT query evalua-
tion in relational databases, Proceedings of 1991 ACM SIGMOD International
Conference on Managment of Data (SIGMOD 1991): 278-287, May 29-31,
1991, Denver(CO), USA.

66. Immon W. H., Building the data warehouse, John Wiley and Sons, New York,
1996.

67. Ioannidis Y. E. and Wong E., Query optimization by simulated annealing,
Proceedings of 1987 ACM SIGMOD International Conference on Managment
of Data (SIGMOD 1987): 9-22, May 27-29, 1987, San Francisco (CA), USA.

68. Ioannidis Y. E. and Kang Y. C., Randomized algorithms for optimizing large
join queries, Proceedings of 1990 ACM SIGMOD International Conference on
Managment of Data (SIGMOD 1990): 312-321, May 23-25, 1990, Atlantic City
(NJ), USA.

69. Ioannidis Y. E. and Christodoulakis S., On the propagation of errors in the size
of join results, Proceedings of 1991 ACM SIGMOD International Conference on
Managment of Data (SIGMOD 1991): 268-277, May 29-31, 1991, Denver(CO),
USA.

70. Ioannidis Y. E. and Christodoulakis S., Optimal histograms for limiting worst-
case error propagation in size of join results, ACM Transactions on Database
Systems (TODS), 18(4): 709-748, June 1984.

71. Ioannidis Y. E. Universality of serial histograms, Proceedings of 19th Interna-
tional Conference on Very Large Data Bases (VLDB 1993): 256-267, August
24-27, 1993, Dublin, Ireland.



152 References

72. Ioannidis Y. E. and Poosala V., Balancing histogram optimality and practi-
cality for query result size estimation, Proceedings of 1995 ACM SIGMOD
International Conference on Managment of Data (SIGMOD 1995): 233-244,
May 22-25, 1995, San Josè (CA), USA.

73. Ioannidis Y. E. The history of histograms (abridged), Proceedings of 29th Inter-
national Conference on Very Large Data Bases (VLDB 2003): 19-30, Septem-
ber 9-12, 2003, Berlin, Germany.

74. Jagadish H. V., Koudas N., Muthukrishnan S., Poosala V., Sevcik K., and Suel
T., Optimal histograms with quality guarantees, Proceedings of 24th Interna-
tional Conference on Very Large Data Bases (VLDB 1998): 275-286, August
24-27, 1998, New York City (NY), USA.

75. Jagadish, H. V., Jin, H., Ooi, B. C., and Tan, K.-L., Global optimization of
histograms, Proceedings of 2001 ACM SIGMOD International Conference on
Managment of Data (SIGMOD 2001): 223-234, May 21-24, 2001, Santa Bar-
bara (CA), USA.

76. Jain R. and Chlamtac I., The P2 algorithm for dynamic calculation of quantiles
and histograms without storing observations, Communications of the ACM,
28(10): 1076-1085, October 1985.

77. Jarke M. and Kock J., Query optimization in database systems, Computing
Surveys, 16(2): 111-152, June 1984.

78. Jawerth, B. and Sweldens, W., An overview of wavelet based multiresolution
analyses, SIAM Review, 36(3): 377-412, September 1994.

79. Kamel N. and King R., A model of data distributions based on texture analysis,
Proceedings of 1985 ACM SIGMOD International Conference on Managment
of Data (SIGMOD 1985): 319-325, May 28-31, 1985, Austin (TX), USA.

80. Kaufmann L. and Rousseeuw P. J., Clustering by means of medoids, Statisti-
cal Data Analysis based on the L1 Norm and Related Methods: 405-416, Else-
vier/North Holland, Amsterdam, 1987.

81. Kaufman L. and Rousseeuw P. J., Finding Groups in Data: An Introduction
to Cluster Analysis, Wiley, 2005.

82. Kober V. and Cristobal G., Fast recursive algorithms for short-time discrete
cosine transform, Electronic Letters, 35(15): 1236-1238, July 1999.

83. König A. and Weikum G., Combining histograms and parametric curve fitting
for feedback-driven query result-size estimation, Proceedings of 25th Interna-
tional Conference on Very Large Data Bases (VLDB 1999): 423-434, Septem-
ber 7-10, 1999, Edinburgh, UK.

84. Kooi R. (1980) The optimization of queries in relational databases, PhD Thesis,
Case Western Reserve University, Cleveland, Ohio.

85. Kooi R. and Frankfurth D., Query optimization in INGRES, IEEE Database
engineering bulletin: 5(3): 2-5, September 1982.

86. Korn F., Johnson T., and Jagadish H. V., Range selectivity estimation for
continuous attributes, Proceedings of 15th International Conference on Scien-
tific and Statistical Database Management (SSDBM 2003): 244-253, 28-30 July,
1999, Cleveland (OH), USA.

87. Lee J.-H., Kim D.-H., and Chung C.-W., Multi-dimensional selectivity esti-
mation using compressed histogram information, Proceedings of 1999 ACM
SIGMOD International Conference on Managment of Data (SIGMOD 1999):
205-214, June 1-3, 1999, Philadelphia (PA), USA.



References 153

88. Lefons E., Silvestri A., and Tangorra F., An analytic approach to statistical
satabases, Proceedings of 9th International Conference on Very Large Data
Bases (VLDB 1983): 260-274, October 31-November 2, 1983, Florence, Italy.

89. Ling Y. and Sun W., An evaluation of sampling-based size estimation methods
for selection in database systems, Proceedings of 11th International Conference
on Data Engineering (ICDE 1995): 532-539, March 6-10, 1995, Taipei, Taiwan.

90. Lipton R. J. and Naughton J. F., Query size estimation by adaptive sampling,
Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems: 40-46, April 2-4, 1990, Nashville (TN), USA.

91. Lipton R. J., Naughton J. F., and Schneider D. A., Practical selectivity estima-
tion through adaptive sampling, Proceedings of 1990 ACM SIGMOD Interna-
tional Conference on Managment of Data (SIGMOD 1990): 1-11, May 23-25,
1990, Atlantic City (NJ), USA.

92. Luk W. S., On estimating block accesses in database organizations, Commu-
nication of the ACM, 26(11): 945-947, November 1983.

93. MacQueen J. B., Some methods for classification and analysis of multivariate
observations, Proceedings of 5th Berkeley Symposium on Mathematical Statis-
tics and Probability, 1: 281-297, Berkeley, University of California Press, 1967.

94. Mackert L. F. and Lohman G. M, R∗ optimizer validation and performance
evaluation for local queries, Proceedings of 1986 ACM SIGMOD International
Conference on Managment of Data (SIGMOD 1986): 84-95, May 28-30, 1986,
Washington (DC), USA.

95. Mackert L. F. and Lohman G. M, R∗ optimizer validation and performance
evaluation for distributed queries, Proceedings of 12th International Conference
on Very Large Data Bases (VLDB 1986): 149-159, August 25-28, 1986, Kyoto,
Japan.

96. Mamoulis N. and Papadias D., Selectivity estimation of complex spatial
queries, Proceedings of 7th International Symposium on Advances in Spatial
and Temporal Databases (SSTD 2001): 155-174, July 12-15, 2001, Redondo
Beach (CA), USA.

97. Manku G. S., Rajagopalan S., and Lindsay B. G., Approximate medians and
other quantiles in one pass and with limited memory, Proceedings of 1998 ACM
SIGMOD International Conference on Managment of Data (SIGMOD 1998):
426-435, June 2-4, 1998, Seattle (WA), USA.

98. Marshall A. and Olkin I., Inequalities: theory of majorization and its applica-
tions, Academic press, New York, 1979.

99. Matias Y., Vitter J. S. and Wang M., Wavelet-based histograms for selectivity
estimation, Proceedings of 1998 ACM SIGMOD International Conference on
Managment of Data (SIGMOD 1998), June 2-4, 1998, Seattle (WA), USA.

100. Merrett T. H., Database cost analysys: a top-down approach, Proceedings of
1977 ACM SIGMOD International Conference on Managment of Data (SIG-
MOD 1977): 135-143, August 3-5, 1977, Toronto, Canada.

101. Merrett T. H. and Otoo E. J., Distribution models of relations, Proceedings of
5th International Conference on Very Large Data Bases (VLDB 1979): 418-
425, October 3-5, 1979, Rio de Janeiro, Brasil.

102. Moore G. E., Cramming more components onto integrated circuits, Electronics
Magazine, 38(8): 114-117, April 1965.

103. Muralikrishna M. and DeWitt D. J., Equi-depth histograms for estimating
selectivity factors for multi-dimensional, Proceedings of 1988 ACM SIGMOD



154 References

International Conference on Managment of Data (SIGMOD 1988): 28-36, June
1-3, 1988, Chicago (IL), USA.

104. Muthukrishnan S., Poosala V., and Suel T., On rectangular partitioning in
two dimensions: algorithms, complexity and applications, Proceedings of 7th
International Conference on Database Theory (ICDT 1999): 236-256, January
10-12, 1999, Jerusalem, Israel.

105. Ng R. T. and Han J., Efficient and effectevive clustering methods for spatial
data mining, Proceedings of 20th International Conference on Very Large Data
Bases (VLDB 1994); 144-155, September 12-15, 1994, Santiago de Chile, Chile.

106. Piatetsky-Shapiro G., The optimal selection of secondary indices is NP-
complete, ACM SIGMOD Record, 13(2): 72-75, January 1983.

107. Piatetsky-Shapiro G., A self-organizing database system - A different approach
to query optimization, PhD thesis, Department of Computer Science, New York
University, 1984.

108. Piatetsky-Shapiro G. and Connell C., Accurate estimation of the number of
tuples satisfying a condition, Proceedings of 1984 ACM SIGMOD International
Conference on Managment of Data (SIGMOD 1984): 256-276, June 18-21,
1984, Boston (MA), USA.

109. Poosala V., Ioannidis Y. E., Haas P. J., and Shekita E. J., Improved histograms
for selectivity estimation of range predicates, Proceedings of 1996 ACM SIG-
MOD International Conference on Managment of Data (SIGMOD 1996): 294-
305, June 4-6, 1996, Montreal, Canada.

110. Poosala V. and Ioannidis Y. E., Estimation of query-result distribution and its
application in parallel-join load balancing, Proc. of 22nd International Confer-
ence on Very Large Data Bases (VLDB 1996): 448-459, September 3-6, 1996,
Mumbai (Bombai), India.

111. Poosala V. and Ioannidis Y. E., Selectivity estimation without the attribute
value independence assumption, Proceedings of 23rd International Conference
on Very Large Data Bases (VLDB 1997): 486-495, August 25-29, 1997, Athens,
Greece.

112. Raatikainen K. E. E., Simultaneous Estimation of Several Persentiles, Simula-
tion, 49(4): 159-164, October 1987.

113. Rothnie J. B. Jr. and Lonzano T., Attribute based file organization in a paged
memory environment, Communications of the ACM, 17(2): 63-69, February
1974.

114. Schkolnick M., Secondary index optimization, Proceedings of 1975 ACM SIG-
MOD International Conference on Managment of Data (SIGMOD 1975): 186-
192, May 14-16, 1975, San Jose (CA), USA.

115. Schuegraf E. J., Compression of large inverted files with hyperbolic term dis-
tribution, Information Processing and Management, 12(6): 377-384, 1976.

116. Selinger P. G., Astrahan M. M., Chamberlin D. D., Lorie R. A., and Price
T. G., Access path selection in a relational database management system,
Proceedings of 1979 ACM SIGMOD International Conference on Managment
of Data (SIGMOD 1979): 23-34, May 30-June 1, 1979, Boston (MA), USA.

117. Shanmugasundaram J., Fayyad U., and Bradley P. S., Compressed data cubes
for OLAP aggregate query approximation on continuous dimensions, Proceed-
ings of 5th International Conference on Knowledge Discovery and Data Mining
(KDD 1999): 223-232, August 15-18, 1999, San Diego (CA), USA.



References 155

118. Shoshani A. and Wong H. K. T., Statistical and scientific database issues,
IEEE Transactions On Software Engineering (TSE), 11(10): 1040-1047, Octo-
ber 1985.

119. Siler K. F., A stochastic evaluation model for database organization in data
retrival systems, Communications of the ACM, 19(2): 84-95, February 1976.

120. Stollnitz E. J., DeRose T. D., and Salesin D. H., Wavelets for Computer Graph-
ics - Theory and Applications, Morgan Kaufmann Publishers, San Francisco
(CA), USA, 1996.

121. Stonebraker M., The INGRES Papers: Anatomy of a Relational Database Sys-
tem, Addison-Wesley, 1986

122. Sun W., Ling Y., Rishe N., and Deng Y. An instant and accurate size es-
timation method for joins and selection in a retrieval-intensive environment.
Proceedings of 1993 ACM SIGMOD International Conference on Managment
of Data (SIGMOD 1993): 79-88, May 26-28, 1993, Washington (DC), USA.

123. Swami A. and Gupta A., Optimization of large join queries, Proceedings of 1988
ACM SIGMOD International Conference on Managment of Data (SIGMOD
1988): 8-17, June 1-3, 1988, Chicago (IL), USA.

124. Vander Zanden B. T., Taylor H. M. and Bitton D., Estimating block accesses
when attributes are correlated, Proceedings of 12th International Conference
on Very Large Data Bases (VLDB 1986): 119-127, August 25-28, 1986, Kyoto,
Japan.

125. Vitter J. S., Faster methods for random sampling, Commununications of the
ACM, 27(7): 703-718, July 1984.

126. Vitter J. S., An efficient algorithm for sequential random sampling, ACM
Transactions on Mathematical Software, 13(1): 58-67, March 1987.

127. Vitter J. S., Wang M., and Iyer, B., Data cube approximation and histograms
via wavelets, Proceedings of the 1998 ACM CIKM International Conference
on Information and Knowledge Management (CIKM 1998): 96-104, November
3-7, 1998, Bethesda (MD) USA.

128. Vitter J. S. and Wang M., Approximate computation of multidimensional ag-
gregates of sparse data using wavelets, Proceedings of 1999 ACM SIGMOD
International Conference on Managment of Data (SIGMOD 1999): 193-204,
June 1-3, 1999, Philadelphia (PA), USA.

129. Wand M. P. and Jones M. C., Kernel smoothing, Monographs on Statistics and
Applied Probability, Chapman & Hall, 1995.

130. Wang M., Vitter J. S., Lim L., and Padmanabhan S., Wavelet-based cost es-
timation for spatial queries, Proceedings of 7th International Symposium on
Advances in Spatial and Temporal Databases (SSTD 2001): 175-196, July 12-
15, 2001, Redondo Beach (CA), USA.

131. Whang K.-Y. and Wiederhold G., Estimating block accesses in database orga-
nizations: A closed noniterative formula, Communications of the ACM, 26(11):
940-944, November 1983.

132. Yao S. B., An attribute based model for database access cost analysis, ACM
Transactions on Database Systems (TODS), 2(1): 45–67, March 1977.

133. Yao S. B., Approximating block accesses in databases organizations. Commu-
nications of the ACM, 20 (4): 260-261, April 1977.

134. Yu C. T. and Chang C. C., Distributed qury processing, Computing Surveys,
16(4): 399-433, December 1984.



156 References

135. Zhang D., Gunopulos D., Tsotras V. J., and Seeger B., Temporal aggregation
over data streams using multiple granularities, Proceedings of 8th International
Conference on Extending Database Technology (EDBT 2002): 646-663, March
25-27, 2002, Prague, Czech Republic.

136. Zhang D., Gunopulos D., Tsotras V. J., and Seeger B., Temporal and spatio-
temporal aggregations over data streams using multiple time granularities, In-
formation Systems, 28(1-2): 61-84 , March-April 2003.

137. Zhang T., Ramakrishnan R., and Livny M., BIRCH: An Efficient Data Clus-
tering Method for Very Large Databases, Proceedings of 1996 ACM SIGMOD
International Conference on Managment of Data (SIGMOD 1996): 103-114,
June 4-6, 1996, Montreal, Canada.

138. Zipf G. K., Human behaviour and the principle of the least effort, Addison-
Wesley, Reading, Massachusets, 1949.



Index

Aboulnaga A., 54
Acharya S., 52
Ahrens J. H., 60
Alsabti K., 49

Beninger J. R, 40
Blohsfeld B., 58
Bruno N., 56
Buccafurri F., 43, 57

Cardenas A. F., 2
Chakrabart K., 38
Chaudhuri S., 49, 54
Chen C. M., 27
Cheung T.-Y., 3
Chlamtac I., 49
Christodoulakis S., 4, 26, 48, 50
Codd E. F., 1
Connell C., 49

Deshpande A., 53
DeWitt D. J., 50
Dieter U., 60

Eckart C., 53

Fedorowicz J., 26
Fedorowicz J. E., 26
Furtado P., 52

Garofalakis M., 39
Gibbons P. B., 39
Gilbert A. C., 44
Graunt J., 41

Guerry A. M., 40
Guha S., 44
Gunopulos D., 55, 58
Gupta A., 12

Haar A., 28
Heising W. P., 4
Hellerstein J. M., 21
Hill E., 26

Immon W. H., 13
Ioannidis Y. E., 12, 50, 51, 53

Jagadish H. V., 44
Jain R., 49
Juran J. M., 4

König A., 57
Kamel N., 49
Kang Y. C., 12
King R., 49
Kooi R., 41
Korn F., 27
Kumar A., 39

Lee J.-H., 57
Lefons E., 26
Lim L., 38
Lonzano T., 2
Luk W. S., 3, 4

Madeira H., 52
Manku G. S., 49
Matias Y., 36



158 Index

Merret T. H., 10
Merrett T. H., 41, 48
Moore G. E., 1
Morlet J., 28
Muralikrishna M., 50
Muthukrishnan S., 48

Nightingale F., 41

Otoo E. J., 10, 41, 48

Padmanabhan S., 38
Pareto V., 4
Pearson K., 40
Piatetsky-Shapiro G., 6, 49
Playfair W., 41
Poosala V., 45, 51, 53

Raatikained K. E. E., 49
Robyn D. L., 40
Rothnie J. B. Jr., 2
Roussopoulos N., 27

Schuegraf E. J., 26
Selinger P. G., 25
Shanmugasundaram J., 27
Siler K. F., 26
Sun W., 26
Swami A., 12

Vander Zanden B. T., 4, 51
Vitter J. S., 37, 60

Wang M., 37
Weikum G., 57
Whang K.-Y., 3, 7
Wiederhold G., 3, 7
Wong E., 12

Yao S. B., 3
Young G., 53

Zipf G. K., 25



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




